Skip to main content
Log in

Nonconforming Virtual Element Method for the Time Fractional Reaction–Subdiffusion Equation with Non-smooth Data

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider the nonconforming virtual element method (VEM) for the approximation of the time fractional reaction–subdiffusion equation involving the Caputo fractional derivative. For the numerical discrete method of the Caputo fractional derivative, we permit the use of nonuniform time steps, since they are helpful to deal with the non-smooth system. Meanwhile, the nonconforming VEM, which is constructed for any order of accuracy and for very general shaped polygonal and polyhedral meshes, is adopted for the discretization of the spatial direction. By introducing a new Ritz projection operator and using two extended ty\(L^2\)-normpes of continuous and discrete fractional Grönwall inequalities, the optimal error estimates for the spatial semi-discrete and temporal-spatial fully discrete systems are proved detailedly. Besides, the fully discrete scheme is proved to be unconditionally stable with regard to the \(L^2\)- and \(H^1\)-norms, respectively. Finally, some numerical calculations are implemented to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  2. Podlubny, I.: Fractional Differential Equations, vol. 198. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  3. Liu, F., Zhuang, P., Liu, Q.: Numerical Methods of Fractional Partial Differential Equations and Applications. Science Press, Beijing (2015)

    Google Scholar 

  4. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Bouchaud, J.-P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195(4–5), 127–293 (1990)

    MathSciNet  Google Scholar 

  6. Rudolf, H.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Google Scholar 

  7. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Redding, Danbury (2006)

    Google Scholar 

  8. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Huang, C., Stynes, M.: A direct discontinuous Galerkin method for a time-fractional diffusion equation with a Robin boundary condition. Appl. Numer. Math. 135, 15–29 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88(319), 2135–2155 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Gal, C.G., Warma, M.: Fractional in time semilinear parabolic equations and applications (2017). Available at https://hal.archives-ouvertes.fr/hal-01578788

  13. Alvarez, E., Gal, C.G., Keyantuo, V., Warma, M.: Well-posedness results for a class of semi-linear super-diffusive equations. Nonlinear Anal. 181, 24–61 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Alsaedi, A., Kirane, M., Torebek, B.T.: Global Existence and Blow-up for Space and Time Nonlocal Reaction–Diffusion Equation. arXiv:1901.06632 (2019)

  15. Liao, H.-L., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction–subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112–1133 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Liao, H.-L., McLean, W., Zhang, J.: A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218–237 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Liao, H.-l., Mclean, W., Zhang, J.: A Second-order Scheme with Nonuniform Time Steps for a Linear Reaction–Sudiffusion Problem. arXiv:1803.09873v2 (2018)

  18. Sun, Z.-Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228(20), 7792–7804 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Gao, G.-H., Sun, Z.-Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230(3), 586–595 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Ji, C.-C., Sun, Z.-Z.: A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64(3), 959–985 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Deng, W.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Li, C., Zhao, Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Li, M., Huang, C., Wang, P.: Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer. Algorithms 74(2), 499–525 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Ren, J., Long, X., Mao, S., Zhang, J.: Superconvergence of finite element approximations for the fractional diffusion-wave equation. J. Sci. Comput. 72(3), 917–935 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Li, M., Gu, X.M., Huang, C., Fei, M., Zhang, G.: A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J. Comput. Phys. 358, 256–282 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Li, X., Xu, C.: A space–time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Lin, Y., Li, X., Xu, C.: Finite difference/spectral approximations for the fractional cable equation. Math. Comput. 80(275), 1369–1396 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Shashkov, M., Steinberg, S.: Solving diffusion equations with rough coefficients in rough grids. J. Comput. Phys. 129(2), 383–405 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Brezzi, F., Falk, R.S., Marini, L.D.: Basic principles of mixed virtual element methods. ESAIM Math. Model. Numer. Anal. 48(4), 1227–1240 (2014)

    MathSciNet  MATH  Google Scholar 

  34. da Veiga, L.B., Manzini, G.: A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34(2), 759–781 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Antonietti, P.F., Da Veiga, L.B., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52(1), 386–404 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Antonietti, P.F., Da Veiga, L.B., Scacchi, S., Verani, M.: A \(C^1\) virtual element method for the Cahn–Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54(1), 34–56 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Vacca, G., Beirão da Veiga, L.: Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 31(6), 2110–2134 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. 50(3), 879–904 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Falk, R.S.: Nonconforming finite element methods for the equations of linear elasticity. Math. Comput. 57(196), 529–550 (1991)

    MathSciNet  MATH  Google Scholar 

  40. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37(3), 1317–1354 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Cangiani, A., Gyrya, V., Manzini, G.: The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54(6), 3411–3435 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Liu, X., Li, J., Chen, Z.: A nonconforming virtual element method for the Stokes problem on general meshes. Comput. Methods Appl. Mech. Eng. 320, 694–711 (2017)

    MathSciNet  Google Scholar 

  43. Liu, X., Chen, Z.: The nonconforming virtual element method for the Navier–Stokes equations. Adv. Comput. Math. 45(1), 51–74 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Zhao, J., Chen, S., Zhang, B.: The nonconforming virtual element method for plate bending problems. Math. Models Methods Appl. Sci. 26(09), 1671–1687 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Antonietti, P.F., Manzini, G., Verani, M.: The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28(2), 387–407 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Zhao, J., Zhang, B., Chen, S., Mao, S.: The Morley-type virtual element for plate bending problems. J. Sci. Comput. 76(1), 610–629 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, P., Pu, H.: A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation. Numer. Algorithms 76(2), 573–598 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Gu, X.-M., Huang, T.-Z., Ji, C.-C., Carpentieri, B., Alikhanov, A.A.: Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation. J. Sci. Comput. 72(3), 957–985 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Zhao, Y., Bu, W., Zhao, X., Tang, Y.: Galerkin finite element method for two-dimensional space and time fractional Bloch–Torrey equation. J. Comput. Phys. 350, 117–135 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Zhao, Y., Zhang, Y., Liu, F., Turner, I., Shi, D.: Analytical solution and nonconforming finite element approximation for the 2D multi-term fractional subdiffusion equation. Appl. Math. Model. 40(19–20), 8810–8825 (2016)

    MathSciNet  Google Scholar 

  52. Zhao, Y., Zhang, Y., Shi, D., Liu, F., Turner, I.: Superconvergence analysis of nonconforming finite element method for two-dimensional time fractional diffusion equations. Appl. Math. Lett. 59, 38–47 (2016)

    MathSciNet  MATH  Google Scholar 

  53. Stynes, M.: Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 19(6), 1554–1562 (2016)

    MathSciNet  MATH  Google Scholar 

  54. Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 229(18), 6613–6622 (2010)

    MathSciNet  MATH  Google Scholar 

  55. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 33(1), 691–698 (2016)

    MathSciNet  MATH  Google Scholar 

  56. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)

    MathSciNet  MATH  Google Scholar 

  57. Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise \({H}^1\) functions. SIAM J. Numer. Anal. 41(1), 306–324 (2004)

    MATH  Google Scholar 

  58. Beirão da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27(13), 2557–2594 (2017)

    MathSciNet  MATH  Google Scholar 

  59. Cao, S., Chen, L.: Anisotropic error estimates of the linear nonconforming virtual element methods. SIAM J. Numer. Anal. 57(3), 1058–1081 (2019)

    MathSciNet  MATH  Google Scholar 

  60. Brenner, S., Scott, R.: The Mathematical Theory of Finite Elementmethods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    Google Scholar 

  61. Alikhanov, A.A.: A priori estimates for solutions of boundary value problems for fractional-order equations. Differ. Equ. 46(5), 660–666 (2010)

    MathSciNet  MATH  Google Scholar 

  62. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jikun Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by NSF of China (Nos. 11801527, 11701522, 11701523, 11771163, 11671160), China Postdoctoral Science Foundation (No. 2018M632791), Key Scientific Research Projects of Higher Eduction of Henan (19A110034), and NSF of Anhui Higher Education Institutions of China (No. KJ2017A704).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhao, J., Huang, C. et al. Nonconforming Virtual Element Method for the Time Fractional Reaction–Subdiffusion Equation with Non-smooth Data. J Sci Comput 81, 1823–1859 (2019). https://doi.org/10.1007/s10915-019-01064-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01064-4

Keywords

Navigation