Skip to main content
Log in

FEM Solution of Exterior Elliptic Problems with Weakly Enforced Integral Non Reflecting Boundary Conditions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider a coupling of finite element (FEM) and boundary element (BEM) methods for the solution of the Poisson equation in unbounded domains. We propose a numerical method that approximates the solution using computations only in an interior finite domain, bounded by an artificial boundary \({{\mathcal {B}}}\). Transmission conditions between the interior domain, discretized by a FEM, and the exterior domain, which is reduced to the boundary \({{\mathcal {B}}}\) via a BEM, are imposed weakly on \({{\mathcal {B}}}\) using a mortar approach. The main advantage of this approach is that non matching grids can be used at the interface \({{\mathcal {B}}}\) of the interior and exterior domains. This allows to exploit the higher accuracy of the BEM with respect to the FEM, which justifies the choice of the discretization in space of the BEM coarser than the one inherited by the spatial discretization of the finite computational domain. We present the analysis of the method and numerical results which show the advantages with respect to the standard approach in terms of computational cost and memory saving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abboud, T., Joly, P., Rodríguez, J., Terrasse, I.: Coupling discontinuous Galerkin methods and retarded potentials for transient wave propagation on unbounded domains. J. Comput. Phys. 230(15), 5877–5907 (2011)

    Article  MathSciNet  Google Scholar 

  2. Babuška, I., Aziz, A.K.: Survey lectures on the mathematical foundation of the finite element method. In: Aziz, A.K. (ed.) The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, pp. 5–359. Academic Press, New York (1972)

    Google Scholar 

  3. Bernardi, C., Maday, Y., Patera, A.T.: A new nonconforming approach to domain decomposition: the mortar element method. In: Brezis, H., Lions, J.-L. (eds.) Nonlinear Partial Differential Equations and Their Applications. Research Notes in Mathematics Series, Collège de France Seminar, vol. XI, pp. 13–51. Longman Sci. Tech, Harlow (1994)

    Google Scholar 

  4. Bertoluzza, S.: Wavelet stabilization of the Lagrange multiplier method. Numer. Math. 86, 1–28 (2000)

    Article  MathSciNet  Google Scholar 

  5. Bertoluzza, S., Falletta, S., Perrier, V.: Wavelet/FEM coupling by the mortar method. In: Pavarino, L.F., Toselli, A. (eds.) Recent Developments in Domain Decomposition Methods. Lecture Notes in Computational Science and Engineering, vol. 23, pp. 119–132. Springer, Berlin (2002)

    Chapter  Google Scholar 

  6. Boulmezaoud, T.Z.: Inverted finite elements: a new method for solving elliptic problems in unbounded domains. M2AN Math. Model. Numer. Anal. 39(1), 109–145 (2005)

    Article  MathSciNet  Google Scholar 

  7. Bhowmik, S.K., Belbaki, R., Boulmezaoud, T.Z., Mziou, S.: Solving two dimensional second order elliptic equations in exterior domains using the inverted finite elements method. Comput. Math. Appl. 72(9), 2315–2333 (2016)

    Article  MathSciNet  Google Scholar 

  8. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics. Springer, Berlin (1991)

    Book  Google Scholar 

  9. Demkowicz, L., Ihlenburg, F.: Analysis of a coupled finite-infinite element method for exterior Helmholtz problems. Numer. Math. 88(1), 43–73 (2001)

    Article  MathSciNet  Google Scholar 

  10. Falletta, S.: The approximate integration in the mortar method constraint. In: Kornhuber, R., Hoppe, R.W., Périaux, J., Pironneau, O., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol. 55, pp. 555–563. Springer, Berlin (2007)

    Google Scholar 

  11. Falletta, S.: BEM coupling with the FEM fictitious domain approach for the solution of the exterior Poisson problem and of wave scattering by rotating rigid bodies. IMA J. Numer. Anal. 38(2), 779–809 (2018)

    Article  MathSciNet  Google Scholar 

  12. Falletta, S., Monegato, G.: An exact non reflecting boundary condition for 2D time-dependent wave equation problems. Wave Motion 51(1), 168–192 (2014)

    Article  MathSciNet  Google Scholar 

  13. Falletta, S., Monegato, G.: Exact nonreflecting boundary conditions for exterior wave equation problems. Publ. Inst. Math. 96, 103–123 (2014)

    Article  MathSciNet  Google Scholar 

  14. Falletta, S., Monegato, G.: Exact non-reflecting boundary condition for 3D time-dependent multiple scattering-multiple sources problems. Wave Motion 58, 281–302 (2015)

    Article  MathSciNet  Google Scholar 

  15. Falletta, S., Monegato, G., Scuderi, L.: A space-time BIE method for nonhomogeneous exterior wave equation problems. The Dirichlet case. IMA J. Numer. Anal. 32(1), 202–226 (2012)

    Article  MathSciNet  Google Scholar 

  16. Falletta, S., Monegato, G., Scuderi, L.: A space-time BIE method for wave equation problems: the (two-dimensional) Neumann case. IMA J. Numer. Anal. 34(1), 390–434 (2014)

    Article  MathSciNet  Google Scholar 

  17. Fischer, M., Gaul, L.: Fast BEM–FEM mortar coupling for acoustic-structure interaction. Int. J. Numer. Methods Eng. 62, 1677–1690 (2005)

    Article  Google Scholar 

  18. Gerdes, K., Demkowicz, L.: Solution of 3D-Laplace and Helmholtz equations in exterior domains using hp-infinite elements. Comput. Methods Appl. Mech. Eng. 137(3–4), 239–273 (1996)

    Article  Google Scholar 

  19. Givoli, D.: Numerical Methods for Problems in Infinite Domains. Elsevier, Amsterdam (1992)

    MATH  Google Scholar 

  20. Givoli, D.: Recent advances in the DtN FE method. Arch. Comput. Methods Eng. 6, 71–116 (1999)

    Article  MathSciNet  Google Scholar 

  21. Givoli, D.: High-order local non-reflecting boundary conditions: a review. Wave Motion 39, 319–326 (2004)

    Article  MathSciNet  Google Scholar 

  22. Glowinski, R., Pan, T.W., Périaux, J.: FEM and BEM coupling in elastostatics using localized Lagrange multipliers. Int. J. Numer. Methods Eng. 69, 2058–2074 (2007)

    Article  Google Scholar 

  23. Grote, M.J., Kirsch, C.: Nonreflecting boundary condition for time-dependent multiple scattering. J. Comput. Phys. 221, 41–62 (2007)

    Article  MathSciNet  Google Scholar 

  24. Grote, M.J., Sim, I.: Local nonreflecting boundary condition for time-dependent multiple scattering. J. Comput. Phys. 230, 3135–3154 (2011)

    Article  MathSciNet  Google Scholar 

  25. Johnson, C., Nédélec, J.C.: On the coupling of boundary integral and finite element methods. Math. Comput. 35(152), 1063–1079 (1980)

    Article  MathSciNet  Google Scholar 

  26. Le Roux, M.N.: Méthode d’éléments finis pour la résolution numérique de problémes extérieurs en dimension 2. R.A.I.R.O. Anal. Numer. 11, 27–60 (1977)

    MATH  Google Scholar 

  27. Rüberg, T., Schanz, M.: Non-conforming coupled time-domain boundary element analysis. In: C.A. Mota Soares et al. (ed.) III European Conference on Computational Mechanics Solids. Structures and Coupled Problems in Engineering, pp. 1–10 (2006)

  28. Rüberg, T., Schanz, M.: Coupling finite and boundary element methods for static and dynamic elastic problems with non-conforming interfaces. Comput. Methods Appl. Mech. Eng. 198(3–4), 449–458 (2008)

    Article  MathSciNet  Google Scholar 

  29. Song, J., Kai-Tai, L.: The coupling of finite element method and boundary element method for two-dimensional Helmholtz equation in an exterior domain. J. Comput. Math. 5, 21–37 (1987)

    MathSciNet  Google Scholar 

  30. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Hartech House, Boston (2005)

    MATH  Google Scholar 

  31. Yang, J., Yu, D.: Domain decomposition with nonmatching grids for exterior transmission problems via FEM and DTN mapping. J. Comput. Math. 24(3), 323–342 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Falletta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the GNCS-INDAM 2016 research program: Accoppiamento FEM–BEM non conforme mediante tecniche di decomposizione di dominio di tipo mortar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertoluzza, S., Falletta, S. FEM Solution of Exterior Elliptic Problems with Weakly Enforced Integral Non Reflecting Boundary Conditions. J Sci Comput 81, 1019–1049 (2019). https://doi.org/10.1007/s10915-019-01048-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01048-4

Keywords

Mathematics Subject Classification

Navigation