Abstract
We present well-posedness and an a priori error analysis of the hybridized discontinuous Galerkin method for the stationary form of the Navier–Stokes problem proposed in Rhebergen and Wells (J Sci Comput 76(3):1484–1501, 2018. https://doi.org/10.1007/s10915-018-0671-4). This scheme was shown to result in an approximate velocity field that is pointwise divergence-free and divergence-conforming. As a consequence we show that the velocity error estimate is independent of the pressure. Furthermore, we show that estimates for both the velocity and pressure are optimal. Numerical examples demonstrate pressure-robustness and optimality of the scheme.
Similar content being viewed by others
References
Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21, 337–344 (1984). https://doi.org/10.1007/BF02576171
Cesmelioglu, A., Cockburn, B., Nguyen, N.C., Peraire, J.: Analysis of HDG methods for Oseen equations. J. Sci. Comput. 55, 392–431 (2013). https://doi.org/10.1007/s10915-012-9639-y
Cesmelioglu, A., Cockburn, B., Qiu, W.: Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier–Stokes equations. Math. Comput. 86, 1643–1670 (2017). https://doi.org/10.1090/mcom/3195
Cesmelioglu, A., Rhebergen, S., Wells, G.N.: An embedded-hybridized discontinuous Galerkin method for the coupled Stokes–Darcy system. Technical report. https://arxiv.org/abs/1905.09753, submitted (2019)
Cockburn, B., Sayas, F.J.: Divergence-conforming HDG methods for Stokes flows. Math. Comput. 83, 1571–1598 (2014). https://doi.org/10.1090/S0025-5718-2014-02802-0
Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40(1), 319–343 (2002). https://doi.org/10.1137/S0036142900380121
Cockburn, B., Kanschat, G., Schötzau, D.: The local discontinuous Galerkin method for the Oseen equations. Math. Comput. 73(246), 569–593 (2003). https://doi.org/10.1090/S0025-5718-03-01552-7
Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations. SIAM J. Numer. Anal. 45(4), 1742–1776 (2007). https://doi.org/10.1137/060666305
Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009). https://doi.org/10.1137/070706616
Cockburn, B., Dubois, O., Gopalakrishnan, J., Tan, S.: Multigrid for an HDG method. IMA J. Numer. Anal. 34(4), 1386–1425 (2014). https://doi.org/10.1093/imanum/drt024
Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Rev. Fr. Autom. Inf. Rech. Opér. Math. 7, 33–75 (1973)
Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques et Applications, vol. 69. Springer, Berlin (2012)
Egger, H., Waluga, C.: \(hp\) analysis of a hybrid DG method for Stokes flow. IMA J. Numer. Anal. 33, 687–721 (2013). https://doi.org/10.1093/imanum/drs018
Girault, V., Raviart, P.: Finite element methods for Navier–Stokes equations: theory and algorithms, Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986)
Hansbo, P., Larson, M.G.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191, 1895–1908 (2002). https://doi.org/10.1016/S0045-7825(01)00358-9
Hood, P., Taylor, C.: Navier–Stokes Equations Using Mixed Interpolation. Finite Element Methods in Flow Problems, pp. 121–132. University of Alabama, Tuscaloosa (1974)
Horváth, T., Rhebergen, S.: A locally conservative and energy-stable finite element method for the Navier–Stokes problem on time-dependent domains. Int. J. Numer. Methods Fluids 89(12), 519–532 (2019). https://doi.org/10.1002/fld.4707
John, V.: Finite Element Methods for Incompressible Flow Problems, Springer Series in Computational Mathematics, vol. 51. Springer, Cham (2016)
John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59(3), 492–544 (2017). https://doi.org/10.1137/15M1047696
Kirby, R., Sherwin, S., Cockburn, B.: To CG or to HDG: a comparative study. J. Sci. Comput. 51(1), 183–212 (2012). https://doi.org/10.1007/s10915-011-9501-7
Labeur, R.J., Wells, G.N.: Energy stable and momentum conserving hybrid finite element method for the incompressible Navier.-Stokes equations. SIAM J. Sci. Comput. 34(2), A889–A913 (2012). https://doi.org/10.1137/100818583
Lehrenfeld, C.: Hybrid discontinuous Galerkin methods for solving incompressible flow problems. Diplomarbeit, Rheinisch-Westfälischen Technischen Hochschule Aachen (2010)
Lehrenfeld, C., Schöberl, J.: High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows. Comput. Methods Appl. Mech. Eng. 307, 339–361 (2016). https://doi.org/10.1016/j.cma.2016.04.025
Linke, A.: On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Eng. 268, 782–800 (2014). https://doi.org/10.1016/j.cma.2013.10.011
Linke, A., Merdon, C.: Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 311, 304–326 (2016). https://doi.org/10.1016/j.cma.2016.08.018
Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-.Stokes equations. J. Comput. Phys. 230(4), 1147–1170 (2011). https://doi.org/10.1016/j.jcp.2010.10.032
Oikawa, I.: Analysis of a reduced-order HDG method for the Stokes equations. J. Sci. Comput. 67(2), 475–492 (2016). https://doi.org/10.1007/s10915-015-0090-8
Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier–Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. 36(4), 1943–1967 (2016). https://doi.org/10.1093/imanum/drv067
Qiu, W., Shi, K.: A mixed DG method and an HDG method for incompressible magnetohydrodynamics. Numer. Anal (2019). https://doi.org/10.1093/imanum/dry095
Rhebergen, S., Cockburn, B.: A space–time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains. J. Comput. Phys. 231(11), 4185–4204 (2012). https://doi.org/10.1016/j.jcp.2012.02.011
Rhebergen, S., Wells, G.N.: Analysis of a hybridized/interface stabilized finite element method for the Stokes equations. SIAM J. Numer. Anal. 55(4), 1982–2003 (2017). https://doi.org/10.1137/16M1083839
Rhebergen, S., Wells, G.N.: A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field. J. Sci. Comput. 76(3), 1484–1501 (2018). https://doi.org/10.1007/s10915-018-0671-4
Rhebergen, S., Wells, G.N.: An embedded-hybridized discontinuous galerkin finite element method for the stokes equations. Technical report. https://arxiv.org/abs/1811.09194, submitted (2018)
Rhebergen, S., Wells, G.N.: Preconditioning of a hybridized discontinuous galerkin finite element method for the Stokes equations. J. Sci. Comput. (2018). https://doi.org/10.1007/s10915-018-0760-4
Schöberl, J.: C++11 implementation of finite elements in NGSolve. Technical Report ASC Report 30/2014, Institute for Analysis and Scientific Computing. Vienna University of Technology (2014). http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/ngs-cpp11.pdf
Temam, R.: Navier–Stokes Equations, 3rd edn. Elsevier Science Publishers B.V, Amsterdam (1984)
Wang, J., Ye, X.: New finite element methods in computational fluid dyamics by H(div) elements. SIAM J. Numer. Anal. 45(3), 1269–1286 (2007). https://doi.org/10.1137/060649227
Wells, G.N.: Analysis of an interface stabilized finite element method: the advection–diffusion–reaction equation. SIAM J. Numer. Anal. 49(1), 87–109 (2011). https://doi.org/10.1137/090775464
Yakovlev, S., Moxeym, D., Kirbym, R.M., Sherwin, S.J.: To CG or to HDG: a comparative study in 3D. J. Sci. Comput. (2015). https://doi.org/10.1007/s10915-015-0076-6
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
SR gratefully acknowledges support from the Natural Sciences and Engineering Research Council of Canada through the Discovery Grant Program (RGPIN-05606-2015) and the Discovery Accelerator Supplement (RGPAS-478018-2015).
Rights and permissions
About this article
Cite this article
Kirk, K.L.A., Rhebergen, S. Analysis of a Pressure-Robust Hybridized Discontinuous Galerkin Method for the Stationary Navier–Stokes Equations. J Sci Comput 81, 881–897 (2019). https://doi.org/10.1007/s10915-019-01040-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-019-01040-y