Skip to main content
Log in

Analysis of a Pressure-Robust Hybridized Discontinuous Galerkin Method for the Stationary Navier–Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present well-posedness and an a priori error analysis of the hybridized discontinuous Galerkin method for the stationary form of the Navier–Stokes problem proposed in Rhebergen and Wells (J Sci Comput 76(3):1484–1501, 2018. https://doi.org/10.1007/s10915-018-0671-4). This scheme was shown to result in an approximate velocity field that is pointwise divergence-free and divergence-conforming. As a consequence we show that the velocity error estimate is independent of the pressure. Furthermore, we show that estimates for both the velocity and pressure are optimal. Numerical examples demonstrate pressure-robustness and optimality of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21, 337–344 (1984). https://doi.org/10.1007/BF02576171

    Article  MathSciNet  MATH  Google Scholar 

  2. Cesmelioglu, A., Cockburn, B., Nguyen, N.C., Peraire, J.: Analysis of HDG methods for Oseen equations. J. Sci. Comput. 55, 392–431 (2013). https://doi.org/10.1007/s10915-012-9639-y

    Article  MathSciNet  MATH  Google Scholar 

  3. Cesmelioglu, A., Cockburn, B., Qiu, W.: Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier–Stokes equations. Math. Comput. 86, 1643–1670 (2017). https://doi.org/10.1090/mcom/3195

    Article  MathSciNet  MATH  Google Scholar 

  4. Cesmelioglu, A., Rhebergen, S., Wells, G.N.: An embedded-hybridized discontinuous Galerkin method for the coupled Stokes–Darcy system. Technical report. https://arxiv.org/abs/1905.09753, submitted (2019)

  5. Cockburn, B., Sayas, F.J.: Divergence-conforming HDG methods for Stokes flows. Math. Comput. 83, 1571–1598 (2014). https://doi.org/10.1090/S0025-5718-2014-02802-0

    Article  MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40(1), 319–343 (2002). https://doi.org/10.1137/S0036142900380121

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Kanschat, G., Schötzau, D.: The local discontinuous Galerkin method for the Oseen equations. Math. Comput. 73(246), 569–593 (2003). https://doi.org/10.1090/S0025-5718-03-01552-7

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations. SIAM J. Numer. Anal. 45(4), 1742–1776 (2007). https://doi.org/10.1137/060666305

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009). https://doi.org/10.1137/070706616

    Article  MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Dubois, O., Gopalakrishnan, J., Tan, S.: Multigrid for an HDG method. IMA J. Numer. Anal. 34(4), 1386–1425 (2014). https://doi.org/10.1093/imanum/drt024

    Article  MathSciNet  MATH  Google Scholar 

  11. Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Rev. Fr. Autom. Inf. Rech. Opér. Math. 7, 33–75 (1973)

    MathSciNet  MATH  Google Scholar 

  12. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques et Applications, vol. 69. Springer, Berlin (2012)

    MATH  Google Scholar 

  13. Egger, H., Waluga, C.: \(hp\) analysis of a hybrid DG method for Stokes flow. IMA J. Numer. Anal. 33, 687–721 (2013). https://doi.org/10.1093/imanum/drs018

    Article  MathSciNet  MATH  Google Scholar 

  14. Girault, V., Raviart, P.: Finite element methods for Navier–Stokes equations: theory and algorithms, Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  15. Hansbo, P., Larson, M.G.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191, 1895–1908 (2002). https://doi.org/10.1016/S0045-7825(01)00358-9

    Article  MathSciNet  MATH  Google Scholar 

  16. Hood, P., Taylor, C.: Navier–Stokes Equations Using Mixed Interpolation. Finite Element Methods in Flow Problems, pp. 121–132. University of Alabama, Tuscaloosa (1974)

    Google Scholar 

  17. Horváth, T., Rhebergen, S.: A locally conservative and energy-stable finite element method for the Navier–Stokes problem on time-dependent domains. Int. J. Numer. Methods Fluids 89(12), 519–532 (2019). https://doi.org/10.1002/fld.4707

    Article  MathSciNet  Google Scholar 

  18. John, V.: Finite Element Methods for Incompressible Flow Problems, Springer Series in Computational Mathematics, vol. 51. Springer, Cham (2016)

    Book  Google Scholar 

  19. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59(3), 492–544 (2017). https://doi.org/10.1137/15M1047696

    Article  MathSciNet  MATH  Google Scholar 

  20. Kirby, R., Sherwin, S., Cockburn, B.: To CG or to HDG: a comparative study. J. Sci. Comput. 51(1), 183–212 (2012). https://doi.org/10.1007/s10915-011-9501-7

    Article  MathSciNet  MATH  Google Scholar 

  21. Labeur, R.J., Wells, G.N.: Energy stable and momentum conserving hybrid finite element method for the incompressible Navier.-Stokes equations. SIAM J. Sci. Comput. 34(2), A889–A913 (2012). https://doi.org/10.1137/100818583

    Article  MathSciNet  MATH  Google Scholar 

  22. Lehrenfeld, C.: Hybrid discontinuous Galerkin methods for solving incompressible flow problems. Diplomarbeit, Rheinisch-Westfälischen Technischen Hochschule Aachen (2010)

  23. Lehrenfeld, C., Schöberl, J.: High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows. Comput. Methods Appl. Mech. Eng. 307, 339–361 (2016). https://doi.org/10.1016/j.cma.2016.04.025

    Article  MathSciNet  Google Scholar 

  24. Linke, A.: On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Eng. 268, 782–800 (2014). https://doi.org/10.1016/j.cma.2013.10.011

    Article  MathSciNet  MATH  Google Scholar 

  25. Linke, A., Merdon, C.: Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 311, 304–326 (2016). https://doi.org/10.1016/j.cma.2016.08.018

    Article  MathSciNet  Google Scholar 

  26. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-.Stokes equations. J. Comput. Phys. 230(4), 1147–1170 (2011). https://doi.org/10.1016/j.jcp.2010.10.032

    Article  MathSciNet  MATH  Google Scholar 

  27. Oikawa, I.: Analysis of a reduced-order HDG method for the Stokes equations. J. Sci. Comput. 67(2), 475–492 (2016). https://doi.org/10.1007/s10915-015-0090-8

    Article  MathSciNet  MATH  Google Scholar 

  28. Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier–Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. 36(4), 1943–1967 (2016). https://doi.org/10.1093/imanum/drv067

    Article  MathSciNet  MATH  Google Scholar 

  29. Qiu, W., Shi, K.: A mixed DG method and an HDG method for incompressible magnetohydrodynamics. Numer. Anal (2019). https://doi.org/10.1093/imanum/dry095

    Article  Google Scholar 

  30. Rhebergen, S., Cockburn, B.: A space–time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains. J. Comput. Phys. 231(11), 4185–4204 (2012). https://doi.org/10.1016/j.jcp.2012.02.011

    Article  MathSciNet  MATH  Google Scholar 

  31. Rhebergen, S., Wells, G.N.: Analysis of a hybridized/interface stabilized finite element method for the Stokes equations. SIAM J. Numer. Anal. 55(4), 1982–2003 (2017). https://doi.org/10.1137/16M1083839

    Article  MathSciNet  MATH  Google Scholar 

  32. Rhebergen, S., Wells, G.N.: A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field. J. Sci. Comput. 76(3), 1484–1501 (2018). https://doi.org/10.1007/s10915-018-0671-4

    Article  MathSciNet  MATH  Google Scholar 

  33. Rhebergen, S., Wells, G.N.: An embedded-hybridized discontinuous galerkin finite element method for the stokes equations. Technical report. https://arxiv.org/abs/1811.09194, submitted (2018)

  34. Rhebergen, S., Wells, G.N.: Preconditioning of a hybridized discontinuous galerkin finite element method for the Stokes equations. J. Sci. Comput. (2018). https://doi.org/10.1007/s10915-018-0760-4

    Article  MathSciNet  MATH  Google Scholar 

  35. Schöberl, J.: C++11 implementation of finite elements in NGSolve. Technical Report ASC Report 30/2014, Institute for Analysis and Scientific Computing. Vienna University of Technology (2014). http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/ngs-cpp11.pdf

  36. Temam, R.: Navier–Stokes Equations, 3rd edn. Elsevier Science Publishers B.V, Amsterdam (1984)

    MATH  Google Scholar 

  37. Wang, J., Ye, X.: New finite element methods in computational fluid dyamics by H(div) elements. SIAM J. Numer. Anal. 45(3), 1269–1286 (2007). https://doi.org/10.1137/060649227

    Article  MathSciNet  MATH  Google Scholar 

  38. Wells, G.N.: Analysis of an interface stabilized finite element method: the advection–diffusion–reaction equation. SIAM J. Numer. Anal. 49(1), 87–109 (2011). https://doi.org/10.1137/090775464

    Article  MathSciNet  MATH  Google Scholar 

  39. Yakovlev, S., Moxeym, D., Kirbym, R.M., Sherwin, S.J.: To CG or to HDG: a comparative study in 3D. J. Sci. Comput. (2015). https://doi.org/10.1007/s10915-015-0076-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keegan L. A. Kirk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

SR gratefully acknowledges support from the Natural Sciences and Engineering Research Council of Canada through the Discovery Grant Program (RGPIN-05606-2015) and the Discovery Accelerator Supplement (RGPAS-478018-2015).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirk, K.L.A., Rhebergen, S. Analysis of a Pressure-Robust Hybridized Discontinuous Galerkin Method for the Stationary Navier–Stokes Equations. J Sci Comput 81, 881–897 (2019). https://doi.org/10.1007/s10915-019-01040-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01040-y

Keywords

Navigation