Skip to main content
Log in

Numerical Approximations for the Tempered Fractional Laplacian: Error Analysis and Applications

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose an accurate finite difference method to discretize the d-dimensional (for \(d \ge 1\)) tempered integral fractional Laplacian and apply it to study the tempered effects on the solution of problems arising in various applications. Compared to other existing methods, our method has higher accuracy and simpler implementation. Our numerical method has an accuracy of \({\mathcal {O}}(h^\varepsilon )\), for \(u \in C^{0, \,\alpha + \varepsilon } (\bar{\Omega })\) if \(\alpha < 1\) (or \(u \in C^{1, \,\alpha - 1 + \varepsilon } (\bar{\Omega })\) if \(\alpha \ge 1\)) with \(\varepsilon > 0\), suggesting the minimum consistency conditions. The accuracy can be improved to \({\mathcal {O}}(h^2)\), for \(u \in C^{2, \,\alpha + \varepsilon } (\bar{\Omega })\) if \(\alpha < 1\) (or \(u \in C^{3, \,\alpha - 1 + \varepsilon } (\bar{\Omega })\) if \(\alpha \ge 1\)). Numerical experiments confirm our analytical results and provide insights in solving the tempered fractional Poisson problem. It suggests that to achieve the second order of accuracy, our method only requires the solution \(u \in C^{1,1}(\bar{\Omega })\) for any \(\alpha \in (0, 2)\). Moreover, if the solution of tempered fractional Poisson problems satisfies \(u \in C^{p, s}(\bar{\Omega })\) for \(p = 0, 1\) and \(s\in (0, 1]\), our method has the accuracy of \({\mathcal {O}}(h^{p+s})\). Since our method yields a (multilevel) Toeplitz stiffness matrix, one can design fast algorithms via the fast Fourier transform for efficient simulations. Finally, we apply it together with fast algorithms to study the tempered effects on the solutions of various tempered fractional PDEs, including the Allen–Cahn equation and Gray–Scott equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55, 472–495 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baeumer, B., Meerschaert, M.M.: Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233, 2438–2448 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75, 303–325 (2002)

    Article  Google Scholar 

  4. Carr, P., Geman, H., Madan, D.B., Yor, M.: Stochastic volatility for Lévy processes. Math. Finance 13, 345–382 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cartea, \({\dot{\text{A}}}\)., del Castillo-Negrete, D.: Fractional diffusion models of option prices in markets with jumps. Phys. A 374, 749–763 (2007)

  6. Chechkin, A.V., Gonchar, VYu., Klafter, J., Metzler, R.: Natural cutoff in Lévy flights caused by dissipative nonlinearity. Phys. Rev. E 72, 010101 (2005)

    Article  Google Scholar 

  7. Dubrulle, B., Laval, J.-P.: Truncated Lévy laws and 2D turbulence. Eur. Phys. J. B 4, 143–146 (1998)

    Article  Google Scholar 

  8. Duo, S., van Wyk, H.W., Zhang, Y.: A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem. J. Comput. Phys. 355, 233–252 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duo, S., Zhang, Y.: Computing the ground and first excited states of the fractional Schrödinger equation in an infinite potential well. Commun. Comput. Phys. 18, 321–350 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duo, S., Zhang, Y.: Accurate numerical methods for two and three dimensional integral fractional Laplacian with applications. Comput. Method Appl. Mech. Eng. 355, 639–662 (2019)

    Article  MathSciNet  Google Scholar 

  11. Duo, S., Zhang, Y.: Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation. Comput. Math. Appl. 77, 2257–2271 (2016)

    Article  Google Scholar 

  12. Javanainen, M., Hammaren, H., Monticelli, L., Jeon, J.-H., Miettinen, M.S., Martinez-Seara, H., Metzler, R., Vattulainen, I.: Anomalous and normal diffusion of proteins and lipids in crowded lipid membranes. Faraday Discuss. 161, 397–417 (2013)

    Article  Google Scholar 

  13. Khan, A.R., Pečarić, J., Praljak, M.: Weighted Montgomery’s identities for higher order differentiable functions of two variables. Rev. Anal. Numér. Théor. Approx. 42, 49–71 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Kirkpatrick, K., Zhang, Y.: Fractional Schrödinger dynamics and decoherence. Phys. D 332, 41–54 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Koponen, I.: Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Phys. Rev. E 52, 1197–1199 (1995)

    Article  Google Scholar 

  16. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mantegna, R.N., Stanley, H.E.: Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight. Phys. Rev. Lett. 73, 2946–2949 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Meerschaert, M.M., Zhang, Y., Baeumer, B.: Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 35, L17403 (2008)

    Article  Google Scholar 

  19. Minden, V., Ying, L.: A simple solver for the fractional Laplacian in multiple dimensions. arXiv:1802.03770

  20. Pearson, J.E.: Complex patterns in a simple system. Science 261, 189–192 (1993)

    Article  Google Scholar 

  21. Rosiński, J.: Tempering stable processes. Stoch. Process. Appl. 117, 677–707 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sokolov, I.M., Chechkin, A.V., Klafter, J.: Fractional diffusion equation for a power-law-truncated Lévy process. Phys. A 336, 245251 (2004)

    Article  Google Scholar 

  23. Sun, J., Nie, D., Deng, W.: Algorithm implementation and numerical analysis for the two-dimensional tempered fractional Laplacian. preprint (2018)

  24. Tang, T., Wang, L., Yuan, H., Zhou, T.: Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains. arXiv:1905.02476

  25. Zhang, Y., Meerschaert, M.M., Packman, A.I.: Linking fluvial bed sediment transport across scales. Geophys. Res. Lett. 39, L20404 (2012)

    Google Scholar 

  26. Zhang, Z., Deng, W., Fan, H.: Finite difference schemes for the tempered fractional Laplacian. Numer. Math. Theor. Meth. Appl. 12, 492–516 (2019)

    Article  MathSciNet  Google Scholar 

  27. Zhang, Z., Deng, W., Karniadakis, G.E.: A Riesz basis Galerkin method for the tempered fractional Laplacian. SIAM J. Numer. Anal. 56, 3010–3039 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation under Grant No. DMS-1620465.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanzhi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duo, S., Zhang, Y. Numerical Approximations for the Tempered Fractional Laplacian: Error Analysis and Applications. J Sci Comput 81, 569–593 (2019). https://doi.org/10.1007/s10915-019-01029-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01029-7

Keywords

Navigation