Skip to main content
Log in

Numerical Algorithms of the Two-dimensional Feynman–Kac Equation for Reaction and Diffusion Processes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper provides a finite difference discretization for the backward Feynman–Kac equation, governing the distribution of functionals of the path for a particle undergoing both reaction and diffusion (Hou and Deng in J Phys A Math Theor 51:155001, 2018). Numerically solving the equation with the time tempered fractional substantial derivative and tempered fractional Laplacian consists in discretizing these two non-local operators. Here, using convolution quadrature, we provide the first-order and second-order schemes for discretizing the time tempered fractional substantial derivative, which doesn’t require the assumption of the regularity of the solution in time; we use the finite difference method to approximate the two-dimensional tempered fractional Laplacian, and the accuracy of the scheme depends on the regularity of the solution on \({\bar{\varOmega }}\) rather than the whole space. Lastly, we verify the predicted convergence orders and the effectiveness of the presented schemes by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acosta, G., Bersetche, F.M., Borthagaray, J.P.: Finite element approximations for fractional evolution problems. arXiv:1705.09815 [math.NA]

  2. Agmon, N.: Residence times in diffusion processes. J. Chem. Phys. 81, 3644–3647 (1984)

    Article  MathSciNet  Google Scholar 

  3. Baeumer, B., Meerschaert, M.M.: Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233, 2438–2448 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buschman, R.: Decomposition of an integral operator by use of Mikusski calculus. SIAM J. Math. Anal. 3, 83–85 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cairoli, A., Baule, A.: Anomalous processes with general waiting times: functionals and multipoint structure. Phys. Rev. Lett. 115, 110601 (2015)

    Article  Google Scholar 

  6. Cairoli, A., Baule, A.: Feynman–Kac equation for anomalous processes with space- and time-dependent forces. J. Phys. A 50, 164002 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carmi, S., Turgeman, L., Barkai, E.: On distributions of functionals of anomalous diffusion paths. J. Stat. Phys. 141, 1071–1092 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cartea, A., del-Castillo-Negrete, D.: Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Phys. Rev. E 76, 041105 (2007)

    Article  Google Scholar 

  9. Chen, K.H.: Matrix Preconditioning Techniques and Applications. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  10. Chen, M.H., Deng, W.H.: High order algorithm for the time-tempered fractional Feynman–Kac equation. J. Sci. Comput. 76, 867–887 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, M.H., Deng, W.H., Serra-Capizzano, S.: Uniform convergence of V-cycle multigrid algorithms for two-dimensional fractional Feynman–Kac equation. J. Sci. Comput. 74, 1034–1059 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deng, W.H., Chen, M.H., Barkai, E.: Numerical algorithms for the forward and backward fractional Feynman–Kac equations. J. Sci. Comput. 62, 718–746 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deng, W.H., Zhang, Z.J.: High Accuracy Algorithm for the Differential Equations Governing Anomalous Diffusion. World Scientific, Singapore (2019)

    Book  MATH  Google Scholar 

  14. Deng, W.H., Li, B.Y., Tian, W.Y., Zhang, P.W.: Boundary problems for the fractional and tempered fractional operators. Multiscale Model. Simul. 16, 125–149 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Deng, W.H., Zhang, Z.J.: Numerical schemes of the time tempered fractional Feynman–Kac equation. Comput. Math. Appl. 73, 1063–1076 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, Berlin (1993)

    MATH  Google Scholar 

  17. Hou, R., Deng, W.H.: Feynman–Kac equations for reaction and diffusion processes. J. Phys. A Math. Theor. 51, 155001 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jin, B.T., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kac, M.: On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 65, 1–13 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, C., Deng, W.H., Zhao, L.J.: Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete Contin. Dyn. Syst. Ser. B 24, 1989–2015 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52, 129–145 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lubich, C.: Convolution quadrature and discretized operational calculus. II. Numer. Math. 52, 413–425 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lubich, C., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65, 1–17 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter, Berlin (2012)

    MATH  Google Scholar 

  25. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  27. Sun, J., Nie, D.X., Deng, W.H.: Algorithm implementation and numerical analysis for the two-dimensional tempered fractional Laplacian. arXiv:1802.02349 [math.NA]

  28. Tatar, N.: The decay rate for a fractional differential equation. J. Math. Anal. Appl. 295, 303–314 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Turgeman, L., Carmi, S., Barkai, E.: Fractional Feynman–Kac equation for non-Brownian functionals. Phys. Rev. Lett. 103, 190201 (2009)

    Article  MathSciNet  Google Scholar 

  30. Wu, X.C., Deng, W.H., Barkai, E.: Tempered fractional Feynman–Kac equation: theory and examples. Phys. Rev. E 93, 032151 (2016)

    Article  MathSciNet  Google Scholar 

  31. Xing, Y.Y., Yan, Y.B.: A higher order numerical method for time fractional partial differential equations with nonsmooth data. J. Comput. Phys. 357, 305–323 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yan, Y.B., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56, 210–227 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang, Y., Yan, Y.B., Ford, N.J.: Some time stepping methods for fractional diffusion problems with nonsmooth data. Comput. Methods Appl. Math. 18, 129–146 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, Z.J., Deng, W.H., Fan, H.T.: Finite difference schemes for the tempered fractional Laplacian. Numer. Math. Theory Methods Appl. 12, 492–516 (2018)

    Article  MathSciNet  Google Scholar 

  35. Zhang, Z.J., Deng, W.H., Karniadakis, G.E.: A Riesz basis Galerkin method for the tempered fractional Laplacian. SIAM J. Numer. Anal. 56, 3010–3039 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11671182, and the Fundamental Research Funds for the Central Universities under Grants No. lzujbky-2018-ot03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, D., Sun, J. & Deng, W. Numerical Algorithms of the Two-dimensional Feynman–Kac Equation for Reaction and Diffusion Processes. J Sci Comput 81, 537–568 (2019). https://doi.org/10.1007/s10915-019-01027-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01027-9

Keywords

Navigation