Skip to main content
Log in

A Linearly Implicit and Local Energy-Preserving Scheme for the Sine-Gordon Equation Based on the Invariant Energy Quadratization Approach

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop a novel, linearly implicit and local energy-preserving scheme for the sine-Gordon equation. The basic idea is from the invariant energy quadratization approach to construct energy stable schemes for gradient systems, which are energy dispassion. We here take the sine-Gordon equation as an example to show that the invariant energy quadratization approach is also an efficient way to construct linearly implicit and local energy-conserving schemes for energy-conserving systems. Utilizing the invariant energy quadratization approach, the sine-Gordon equation is first reformulated into an equivalent system, which inherits a modified local energy conservation law. The new system are then discretized by the conventional finite difference method and a semi-discretized system is obtained, which can conserve the semi-discretized local energy conservation law. Subsequently, the linearly implicit structure-preserving method is applied for the resulting semi-discrete system to arrive at a fully discretized scheme. We prove that the resulting scheme can exactly preserve the discrete local energy conservation law. Moveover, with the aid of the classical energy method, an unconditional and optimal error estimate for the scheme is established in discrete \(H_h^1\)-norm. Finally, various numerical examples are addressed to confirm our theoretical analysis and demonstrate the advantage of the new scheme over some existing local structure-preserving schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ablowitz, M.J., Herbst, B.M., Schober, C.M.: On the numerical solution of the sine-Gordon equation. J. Comput. Phys. 131, 354–367 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Argyris, J., Haase, M., Heinrich, J.C.: Finite element approximation to two-dimensional sine-Gordon solitons. Comput. Methods Appl. Mech. Eng. 86, 1–26 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bratsos, A.G.: The solution of the two-dimensional sine-Gordon equation using the method of lines. J. Comput. Appl. Math. 85, 241–252 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Energy conservation issues in the numerical solution of the semilinear wave equation. Appl. Math. Comput. 270, 842–870 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Brugnano, L., Iavernaro, F.: Line Integral Methods for Conservative Problems. Chapman et Hall, Boca Raton (2016)

    Book  MATH  Google Scholar 

  6. Cai, J., Wang, Y., Liang, H.: Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schrödinger system. J. Comput. Phys. 239, 30–50 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai, W., Li, H., Wang, Y.: Partitioned averaged vector field methods. J. Comput. Phys. 370, 25–42 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “average vector field” method. J. Comput. Phys. 231, 6770–6789 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christiansen, P.L., Lomdahl, P.S.: Numerical solution of 2+1 dimensional sine-Gordon solitons. Physica D 2, 482–494 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for PDEs. SIAM J. Sci. Comput. 33, 2318–2340 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dehghan, M., Ghesmati, A.: Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput. Phys. Commun. 181, 772–786 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dehghan, M., Shokri, A.: A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math. Comput. Simul. 79, 700–715 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Djidjeli, K., Price, W.G., Twizell, E.H.: Numerical solutions of a damped sine-Gordon equation in two space variables. J. Eng. Math. 29, 347–369 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Furihata, D.: Finite-difference schemes for nonlinear wave equation that inherit energy conservation property. J. Comput. Appl. Math. 134, 37–57 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gong, Y., Cai, J., Wang, Y.: Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs. J. Comput. Phys 279, 80–102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gong, Y., Wang, Y., Wang, Q.: Linear-implicit conservative schemes based on energy quadratization for Hamiltonian PDEs. Preprint

  17. Guo, B., Pascual, P.J., Rodriguez, M.J., Vázquez, L.: Numerical solution of the sine-Gordon equation. Appl. Math. Comput. 18, 1–14 (1986)

    MathSciNet  MATH  Google Scholar 

  18. Hong, J., Jiang, S., Li, C., Liu, H.: Explicit multi-symplectic methods for Hamiltonian wave equations. Commun. Comput. Phys. 2, 662–683 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Jiang, C., Sun, J., Li, H., Wang, Y.: A fourth-order AVF method for the numerical integration of sine-Gordon equation. Appl. Math. Comput. 313, 144–158 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Jiwari, R., Pandit, S., Mittal, R.C.: Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method. Comput. Phys. Commun. 183, 600–616 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Josephson, J.D.: Supercurrents through barries. Adv. Phys. 14, 419–451 (1965)

    Article  Google Scholar 

  22. Kang, X., Feng, W., Cheng, K., Guo, C.: An efficient finite difference scheme for the 2D sine-Gordon equation. arXiv:1706.08632v1 (2017)

  23. Khaliq, A.Q.M., Abukhodair, B., Sheng, Q.: A predictor-corrector scheme for the sine-Gordon equation. Numer. Methods Partial Differ. Equ. 16, 133–146 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, H., Sun, J., Qin, M.: New explicit multi-symplectic scheme for nonlinear wave equation. Appl. Math. Mech. Engl. Ed. 35, 369–380 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM. J. Numer. Anal. 32, 1839–1875 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, Y., Wu, X.: General local energy-preserving integrators for solving multi-symplectic Hamiltonian PDEs. J. Comput. Phys. 301, 141–166 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, C., Wu, X.: Arbitrarily high-order time-stepping schemes based on the operator spectrum theory for high-dimensional nonlinear Klein–Gordon equations. J. Comput. Phys. 340, 243–275 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Matsuo, T., Furihata, D.: Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171, 425–447 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. McLachlan, R.: Symplectic integration of Hamiltonian wave equations. Numer. Math. 66, 465–492 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Reich, S.: Multi-symplectic Runge–Kutta collocation methods for Hamiltonian wave equations. J. Comput. Phys. 157, 473–499 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schober, C.M., Wlodarczyk, T.H.: Dispersive properties of multisymplectic integrators. J. Comput. Phys. 227, 5090–5104 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. arXiv:1710.01331 (2017)

  33. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sheng, Q., Khaliq, A.Q.M., Voss, D.A.: Numerical simulation of two-dimensional sine-Gordon solitons via a split cosine scheme. Math. Comput. Simul. 68, 355–373 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, Y., Wang, B., Ji, Z., Qin, M.: High order symplectic schemes for the sine-Gordon equation. J. Phys. Soc. Jpn. 72, 2731–2736 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, Y., Wang, B., Qin, M.: Local structure-preserving algorithms for partial differential equations. Sci. China Ser. A 51, 2115–2136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three components Cahn–Hilliard phase-field model based on the invariant energy quadratization method. Math. Models Methods Appl. Sci. 27, 1993–2030 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, F., Pérez-García, V.M., Vázquez, L.: Numerical simulation of nonlinear schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)

    MathSciNet  MATH  Google Scholar 

  40. Zhang, F., Vázquez, L.: Two energy conserving numerical schemes for the sine-Gordon equation. Appl. Math. Comput. 45, 17–30 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhao, J., Yang, X., Gong, Y., Wang, Q.: A novel linear second order unconditionally energy stable scheme for a hydrodynamic-tensor model of liquid crystals. Comput. Methods Appl. Mech. Engrg. 318, 803–825 (2017)

    Article  MathSciNet  Google Scholar 

  42. Zhou, Y.: Applications of Discrete Functional Analysis to the Finite Difference Method. International Academic Publishers, Beijing (1990)

    Google Scholar 

  43. Zhu, H., Tang, L., Song, S., Tang, Y., Wang, D.: Symplectic wavelet collocation method for Hamiltonian wave equations. J. Comput. Phys. 229, 2550–2572 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere gratitude to the referees for their insightful comments and suggestions. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11771213, 61872422, 11871418), the National Key Research and Development Project of China (Grant Nos. 2016YFC0600310, 2018YFC0603500, 2018YFC1504205), the Major Projects of Natural Sciences of University in Jiangsu Province of China (Grant Nos. 15KJA110002, 18KJA110003), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20171480), the Foundation of Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems (201905) and the Yunnan Provincial Department of Education Science Research Fund Project (2019J0956).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yushun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Cai, W. & Wang, Y. A Linearly Implicit and Local Energy-Preserving Scheme for the Sine-Gordon Equation Based on the Invariant Energy Quadratization Approach. J Sci Comput 80, 1629–1655 (2019). https://doi.org/10.1007/s10915-019-01001-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01001-5

Keywords

Mathematics Subject Classification

Navigation