Skip to main content
Log in

An Efficient Finite Volume Method for Nonlinear Distributed-Order Space-Fractional Diffusion Equations in Three Space Dimensions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A Crank–Nicolson finite volume approximation for the nonlinear distributed-order space-fractional diffusion equations in three space dimensions is developed, and a resulting nonlinear algebra system with Kronecker-product type coefficient matrix is formulated. The finite volume scheme is proved to be unconditionally stable and convergent with second-order accuracy in terms of the step sizes in time and distributed orders, and \(\min \{3-{\hat{\alpha }}, 3-{\hat{\beta }}, 3-{\hat{\gamma \}}}\)-order accuracy in space with respect to a discrete norm. At each time step, the Newton’s iterative method is employed as a nonlinear solver to handle the resulting nonlinear algebra system. Moreover, during each Newton’s iteration, an efficient biconjugate gradient stabilized method (BiCGSTAB) is developed, in which both the matrix storage and matrix-vector multiplications are efficiently conducted by using the Toeplitz sub-structure of the coefficient matrices. It is proved that the BiCGSTAB method only requires the storage of \(\mathcal {O}(N)\) and the computational cost of \(\mathcal {O}(N \log N)\) per iteration, while no accuracy is lost compared with the Gaussian elimination method. Thus, an efficient finite volume method is developed, and it is well suitable for large-scale modeling and simulations, especially for multi-dimensional problems. Numerical experiments are presented to verify the theoretical results and show strong potential of the efficient method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Article  Google Scholar 

  2. Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66, 046129 (2002)

    Article  Google Scholar 

  3. del-Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Fractional diffusion in plasma turbulence. Phys. Plasmas 11, 3854 (2004)

    Article  Google Scholar 

  4. Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J Comput. Appl. Math. 225, 96–104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-d fractional order diffusion equations. Math. Comput. 87, 2273–2294 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feng, L., Zhuang, P., Liu, F., Turner, I.: Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation. Appl. Math. Comput. 257, 52–65 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Fu, H., Wang, H.: A preconditioned fast finite difference method for space-time fractional partial differential equations. Fract. Calc. Appl. Anal. 20, 88–116 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fu, H., Sun, Y., Wang, H., Zheng, X.: Stability and convergence of a Crank–Nicolson finite volume method for space fractional diffusion equations. Appl. Numer. Math. 139, 38–51 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hejazi, H., Moroney, T., Liu, F.: Stability and convergence of a finite volume method for the space fractional advection–dispersion equation. J. Comput. Appl. Math. 255, 684–697 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jia, J., Wang, H.: A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh. J. Comput. Phys. 299, 842–862 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jin, B., Lazarov, R., Lu, X., Zhou, Z.: A simple finite element method for boundary value problems with a Riemann–Liouville derivative. J. Comput. Appl. Math. 293, 94–111 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kharazmi, E., Zayernouri, M.: Fractional pseudo-spectral methods for distributed-order fractional PDEs. Int. J. Comput. Math. 95, 1340–1361 (2018)

    Article  MathSciNet  Google Scholar 

  14. Kharazmi, E., Zayernouri, M., Karniadakis, G.E.: Petrov–Galerkin and spectral collocation methods for distributed order differential equations. SIAM J Sci. Comput. 39, A1003–A1037 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Laub, A.J.: Matrix Analysis for Scientists and Engineers. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  16. Li, X., Rui, H.: A two-grid block-centered finite difference method for the nonlinear time-fractional parabolic equation. J. Sci. Comput. 72, 863–891 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, Y., Chen, H., Wang, H.: A mixed-type Galerkin variational formulation and fast algorithms for variable-coefficient fractional diffusion equations. Math. Methods Appl. Sci. 40, 5018–5034 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, D., Zhang, J., Zhang, Z.: Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction–subdiffusion equations. J. Sci. Comput. 76, 848–866 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mainardi, F., Pagnini, G., Gorenflo, R.: Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187, 295–305 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Mao, Z., Chen, S., Shen, J.: Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics, vol. 43 (2011)

  23. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Metler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pan, J., Ng, M.K., Wang, H.: Fast iterative solvers for linear systems arising from time-dependent space-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2806–A2826 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  27. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics,Texts in Applied Mathematics, vol. 37, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  28. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  29. Simmons, A., Yang, Q., Moroney, T.: A finite volume method for two-sided fractional diffusion equations on non-uniform meshes. J. Comput. Phys. 335, 747–759 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444–A2458 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, H., Du, N.: A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240, 49–57 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, H., Du, N.: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305–318 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, H., Wang, K.: An \(O(N \log ^2N)\) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830–7839 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, H., Wang, K., Sircar, T.: A direct \(O(N \log ^2 N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yuste, S.B., Quintana-Murillo, J.: A finite difference scheme with non-uniform timesteps for fractional diffusion equations. Comput. Phys. Commun. 183, 2594–2600 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: A unified Petrov–Galerkin spectral method for fractional PDEs. Comput. Methods Appl. Mech. Eng. 283, 1545–1569 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Nos. 91630207 and 11571115), by the Natural Science Foundation of Shandong Province (No. ZR2017 MA006), by the Fundamental Research Funds for the Central Universities (No. 18CX02044A), by the National Science Foundation (No. DMS-1620194) and by the OSD/ARO MURI Grant (No. W911NF-15-1-0562). The authors would like to express their most sincere thanks to the referees for their very helpful comments and suggestions, which greatly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfei Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Liu, H., Wang, H. et al. An Efficient Finite Volume Method for Nonlinear Distributed-Order Space-Fractional Diffusion Equations in Three Space Dimensions. J Sci Comput 80, 1395–1418 (2019). https://doi.org/10.1007/s10915-019-00979-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00979-2

Keywords

Navigation