Skip to main content
Log in

Asymptotic Solutions for High Frequency Helmholtz Equations in Anisotropic Media with Hankel Functions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present asymptotic methods for solving high frequency Helmholtz equations in anisotropic media. The methods are motivated by Babich’s expansion that uses Hankel functions of the first kind to approximate the solution of high frequency Helmholtz equation in isotropic media. Within Babich’s expansion, we can derive the anisotropic eikonal equation and a recurrent system of transport equations to determine the phase and amplitude terms of the wave, respectively. In order to reconstruct the wave with the phase and amplitude terms for any high frequencies, they must be computed with high-order accuracy, for which a high-order factorization approach based on power series expansions at the primary source is applied first to resolve the source singularities, after that high-order schemes can be implemented efficiently. Rigorous formulations are derived, and numerical examples are presented to demonstrate the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications Inc, New York (1965)

    MATH  Google Scholar 

  2. Babich, V.M.: The short wave asymptotic form of the solution for the problem of a point source in an inhomogeneous medium. USSR Comput. Math. Math. Phys. 5(5), 247–251 (1965)

    Article  MATH  Google Scholar 

  3. Babus̆ka, I.M., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM Rev. 42, 451–484 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Benamou, J.D., Luo, S., Zhao, H.-K.: A compact upwind second order scheme for the Eikonal equation. J. Comput. Math. 28, 489–516 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Crandall, M.G., Evans, L.C., Lions, P.-L.: Some property of viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 282(2), 487–502 (1984)

    Article  MATH  Google Scholar 

  6. Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Engquist, B., Runborg, O.: Computational high frequency wave propagation. Acta Numer. 12, 181–266 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fomel, S., Luo, S., Zhao, H.: Fast sweeping method for the factored eikonal equation. J. Comput. Phys. 228(17), 6440–6455 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Glowinski, R., Leung, S., Qian, J.: Operator-splitting based fast sweeping methods for isotropic wave propagation in a moving fluid. SIAM J. Sci. Comput. 38(2), A1195–A1223 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang, G.S., Peng, D.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kao, C.Y., Osher, S., Qian, J.: Lax–Friedrichs sweeping schemes for static Hamilton–Jacobi equations. J. Comput. Phys. 196, 367–391 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Keller, J.B., Lewis, R.M.: Asymptotic methods for partial differential equations: the reduced wave equation and Maxwell’s equations. Surv. Appl. Math. 1, 1–82 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Lions, P.-L.: Generalized Solutions of Hamilton–Jacobi Equations. Pitman, Boston (1982)

    MATH  Google Scholar 

  15. Liu, X.D., Osher, S.J., Chan, T.: Weighted essentially nonoscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lu, W., Qian, J., Burridge, R.: Babich-like ansatz for three-dimensional point-source maxwell’s equations in an inhomogeneous medium at high frequencies. Multiscale Model. Simul. 14(3), 1089–1122 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lu, W., Qian, J., Burridge, R.: Babich’s expansion and the fast huygens sweeping method for the helmholtz wave equation at high frequencies. J. Comput. Phys. 313, 478–510 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lu, W., Qian, J., Burridge, R.: Extending babich’s ansatz for point-source maxwell’s equations using hadamard’s method. Multiscale Model. Simul. 16(2), 727–751 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Luo, S.: A uniformly second order fast sweeping method for Eikonal equations. J. Comput. Phys. 241, 104–117 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Luo, S., Qian, J.: Factored singularities and high-order Lax–Friedrichs sweeping schemes for point-source traveltimes and amplitudes. J. Comput. Phys. 230, 4742–4755 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Luo, S., Qian, J.: Fast sweeping methods for factored anisotropic Eikonal equations: multiplicative and additive factors. J. Sci. Comput. 52(2), 360–382 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Luo, S., Qian, J., Burridge, R.: Fast Huygens sweeping methods for Helmholtz equations in inhomogeneous media in the high frequency regime. J. Comput. Phys. 270, 378–401 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Luo, S., Qian, J., Burridge, R.: High-order factorization based high-order hybrid fast sweeping methods for point-source Eikonal equations. SIAM J. Numer. Anal. 52(1), 23–44 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Luo, S., Qian, J., Zhao, H.: Higher-order schemes for 3D first-arrival traveltimes and amplitudes. Geophysics 77(2), T47–T56 (2012)

    Article  Google Scholar 

  25. Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Math. Anal. 28(4), 907–922 (1991)

    MathSciNet  MATH  Google Scholar 

  26. Pica, A.: Fast and accurate finite-difference solutions of the 3D Eikonal equation parameterized in celerity. In: 67th Annual International Meeting, Society of Exploration Geophysicists, pp. 1774–1777 (1997)

  27. Qian, J., Lu, W., Yuan, L., Luo, S., Burridge, R.: Eulerian geometrical optics and fast Huygens sweeping methods for three-dimensional time-harmonic high-frequency Maxwell’s equations in inhomogeneous media. Multiscale Model. Simul. 14(2), 595–636 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Qian, J., Luo, S., Burridge, R.: Fast Huygens sweeping methods for multi-arrival Green’s functions of Helmholtz equations in the high frequency regime. Geophysics 80(2), T91–T100 (2015)

    Article  Google Scholar 

  29. Qian, J., Yuan, L., Liu, Y., Luo, S., Burridge, R.: Babich’s expansion and high-order Eulerian asymptotics for point-source Helmholtz equations. J. Sci. Comput. 67(3), 883–908 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Serna, S., Qian, J.: A stopping criterion for higher-order sweeping schemes for static Hamilton–Jacobi equations. J. Comput. Math. 28, 552–568 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, L., Rector, J.W., Hoversten, G.M.: Eikonal solver in the celerity domain. Geophys. J. Int. 162, 1–8 (2005)

    Article  Google Scholar 

  32. Zhang, Y.-T., Zhao, H.-K., Qian, J.: High order fast sweeping methods for static Hamilton–Jacobi equations. J. Sci. Comput. 29, 25–56 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Funding was provided by NSF Division of Mathematical Sciences (1418908, 1719907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songting Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: WKB Approximation for Eq. (1) in 2D

We derive the governing equations for the phase and amplitude terms in the WKB expansion (2) for the anisotropic Helmholtz equation (1) in 2D.

Theorem 2

In the WKB approximation (2) for the anisotropic Helmholtz equation (1) in 2D, the phase \(\tau \) satisfies the anisotropic eikonal equation (8), and the amplitude terms \(\{ A_k \}_{k=0}^\infty \) satisfy the following recurrent system,

$$\begin{aligned} \begin{aligned}&A_{-1} \equiv 0, \\&\qquad ( \beta \tau _x + \gamma \tau _z + a\tau _{xx}-2c\tau _{xz}+b\tau _{zz})A_k + 2 \{(a\tau _x-c\tau _z)(A_k)_x + (b\tau _z - c\tau _x)(A_k)_z \} \\&\quad = -( \beta (A_{k-1})_x + \gamma (A_{k-1})_z) - (a (A_{k-1})_{xx} - 2c (A_{k-1})_{xz} + b(A_{k-1})_{zz}), ~ k \ge 0, \end{aligned} \end{aligned}$$
(21)

where \(\beta \equiv a_x - c_z\), and \(\gamma \equiv b_z - c_x\).

Theorem 2 can be proved by careful calculation. We have

$$\begin{aligned} \begin{aligned}&U_x = \sum _{k=0}^\infty \left( \frac{\tau _x A_k}{(\iota \omega )^{k-1}} + \frac{(A_k)_x}{(\iota \omega )^k}\right) e^{\iota \omega \tau };\\&U_z = \sum _{k=0}^\infty \left( \frac{\tau _z A_k}{(\iota \omega )^{k-1}} + \frac{(A_k)_z}{(\iota \omega )^k}\right) e^{\iota \omega \tau };\\&U_{xx} = \sum _{k=0}^\infty \left( \frac{\tau _x^2 A_k}{(\iota \omega )^{k-2}} + \frac{2\tau _x (A_k)_x+ \tau _{xx} A_k}{(\iota \omega )^{k-1}} + \frac{(A_k)_{xx}}{(\iota \omega )^k}\right) e^{\iota \omega \tau };\\&U_{zz} = \sum _{k=0}^\infty \left( \frac{\tau _z^2 A_k}{(\iota \omega )^{k-2}} + \frac{2\tau _z (A_k)_z+ \tau _{zz} A_k}{(\iota \omega )^{k-1}} + \frac{(A_k)_{zz}}{(\iota \omega )^k}\right) e^{\iota \omega \tau };\\&U_{xz} = U_{xz} = \sum _{k=0}^\infty \left( \frac{\tau _x \tau _z A_k}{(\iota \omega )^{k-2}} + \frac{\tau _z (A_k)_x + \tau _x (A_k)_z + \tau _{xz} A_k}{(\iota \omega )^{k-1}} + \frac{(A_k)_{xz}}{(\iota \omega )^k}\right) e^{\iota \omega \tau }.\\ \end{aligned} \end{aligned}$$

By substitution the above formulas into Eq. (1), we have

$$\begin{aligned} \begin{aligned}&\sum _{k=0}^\infty \left( \frac{A_k}{(\iota \omega )^{k-2}} \{a \tau _x^2 - 2c \tau _x \tau _z + b \tau _z^2 - 1/v^2\} \right. \\&\left. \quad +\frac{1}{(\iota \omega )^{k-1}} \{ (\beta \tau _x + \gamma \tau _z + a\tau _{xx}-2c\tau _{xz}+b\tau _{zz})A_k \right. \\&\left. \quad +\,2(a\tau _x - c\tau _z) (A_k)_x + 2(b\tau _z - c \tau _x)(A_k)_z \}\right. \\&\left. \quad +\,\frac{1}{(\iota \omega )^k} \{ \beta (A_k)_x + \gamma (A_k)_z+ a (A_k)_{xx} - 2c (A_k)_{xz} + b(A_k)_{zz}\} \right) e^{\iota \omega \tau } =0. \end{aligned} \end{aligned}$$

Then collecting coefficient for \(O(1/(\iota \omega )^{k-2})\) term and letting it be equal to 0 yields the anisotropic eikonal equation (8), and collecting coefficients for \(O(1/(\iota \omega )^{k-1})\) term and let it be equal to 0 yields the recurrent system (21).

The factorization techniques can also be applied to resolve the source singularities for computing amplitude terms \(\{ A_k \}_{k=0}^\infty \), for instance, see [22, 24, 28] for similar techniques applied for isotropic cases.

Appendix B: WKB Approximation and Babich’s Expansion for Eq. (1) in 3D

We also include the formulations of the WKB approximation and Babich’s expansion for the anisotropic Helmholtz equation (1) in three-dimensional (3D) spaces. We assume the anisotropy tensor \({\mathbf{A }}\) is given as

$$\begin{aligned} {\mathbf{A }}(\mathbf{r }) = \left( \begin{array}{ccc} a(\mathbf{r }) &{}-d(\mathbf{r }) &{} -e(\mathbf{r })\\ -d(\mathbf{r }) &{}b(\mathbf{r }) &{} -f(\mathbf{r })\\ -e(\mathbf{r }) &{}-f(\mathbf{r }) &{} c(\mathbf{r })\\ \end{array} \right) . \end{aligned}$$

Theorem 3

In the WKB approximation (2) for the anisotropic Helmholtz equation (1) in 3D, the phase \(\tau \) satisfies the anisotropic eikonal equation (8), and the amplitude terms \(\{ A_k \}_{k=0}^\infty \) satisfy the following recurrent system,

$$\begin{aligned} \begin{aligned}&A_{-1} \equiv 0, \\&\qquad (\beta \tau _x + \gamma \tau _y + \zeta \tau _z + a \tau _{xx} + b\tau _{yy}+c\tau _{zz} -2d\tau _{xy}-2e\tau _{xz}-2f\tau _{yz}) A_k\\&\qquad + 2 \{(a\tau _x-d\tau _y-e\tau _z)(A_k)_x \\&\qquad + (b\tau _y-d\tau _x - f\tau _z)(A_k)_y + (c\tau _z-e\tau _x - f\tau _y)(A_k)_z \} \\&\quad = -( \beta (A_{k-1})_x + \gamma (A_{k-1})_y + \zeta (A_{k-1})_z) \\&\qquad - (a (A_{k-1})_{xx} + b(A_{k-1})_{yy}+ c(A_{k-1})_{zz} \\&\qquad - 2d(A_{k-1})_{xy} - 2e (A_{k-1})_{xz} - 2f (A_{k-1})_{yz}), ~ k \ge 0, \end{aligned} \end{aligned}$$
(22)

where \(\beta \equiv a_x -d_y- e_z\), \(\gamma \equiv b_y -d_x - f_z\), and \(\zeta = c_z-e_x-f_y\).

Theorem 4

In the Babich’s expansion (5) for the anisotropic Helmholtz equation (1) in 3D, the phase \(\tau \) satisfies the anisotropic eikonal equation (8), and the amplitude terms \(\{ v_k \}_{k=0}^\infty \) satisfy the following recurrent system,

$$\begin{aligned} \begin{aligned}&v_{-1} \equiv 0, \\&\qquad ( \beta T_x + \gamma T_y + \zeta T_z + (4k-6) N + aT_{xx} + bT_{yy} + cT_{zz}- 2dT_{xy}- 2eT_{xz} - 2fT_{yz} )v_k \\&\qquad + 2 \{(aT_x-dT_y-eT_z)(v_k)_x + (bT_y - dT_x-fT_z)(v_k)_y \\&\qquad + (cT_z - eT_x-fT_y)(v_k)_z \} \\&\quad = ( \beta (v_{k-1})_x + \gamma (v_{k-1})_y+ \zeta (v_{k-1})_z) \\&\qquad + (a (v_{k-1})_{xx} + b(v_{k-1})_{yy} + c(v_{k-1})_{zz}\\&\qquad - 2d (v_{k-1})_{xy}- 2e (v_{k-1})_{xz}- 2f (v_{k-1})_{yz} ), ~ k \ge 0, \end{aligned} \end{aligned}$$
(23)

where \(\beta \equiv a_x -d_y- e_z\), \(\gamma \equiv b_y -d_x - f_z\), \(\zeta = c_z-e_x-f_y\), \(N \equiv 1/v^2\), and \(T\equiv \tau ^2\).

Theorems 3 and 4 can be proved similarly as in 2D cases. And the governing equations for \(\tau \) and \(\{v_k\}\) can be solved by the same schemes numerically. Figures  15 and 16 show plots of a 3D model on computational domain \([0,~0.5]^3\) (km) with

$$\begin{aligned} v(\mathbf{r }) = 3-1.75 e^{-((x-0.25)^2+(y-0.25)^2+(z-0.25)^2)/0.64} (\mathrm{km/s}), \end{aligned}$$

and

$$\begin{aligned} {\mathbf{A }}(\mathbf{r }) = \left( \begin{array}{ccc} 1 &{}-0.5 &{} -0.3\\ -0.5 &{}3 &{} -0.1\\ -0.3 &{}-0.1 &{} 2\\ \end{array} \right) \text{ or } \left( \begin{array}{ccc} 1+0.3\sin ^2(\pi x) &{}-0.5+0.1\cos ^2(\pi x) &{} -0.3+0.2\cos ^2(\pi y)\\ -0.5+0.1\cos ^2(\pi x) &{}3+0.2\sin ^2(\pi y) &{} -0.1-0.1\cos ^2(\pi z)\\ -0.3+0.2\cos ^2(\pi y) &{}-0.1-0.1\cos ^2(\pi z) &{} 2+0.1\sin ^2(\pi z)\\ \end{array} \right) . \end{aligned}$$

The source is \(\mathbf{r }_0 = (0.25,0.25,0.25)\) (km).

Fig. 15
figure 15

3D model. Case 1: slices of the wave with \(\omega = 32\pi \) at \(x=0.25\) (km), \(y=0.25\) (km) and \(z=0.25\) (km), respectively. Top: real part; Bottom: imaginary part. Left: \(U_1\); Right: \(U_2\) (Color figure online)

Fig. 16
figure 16

3D model. Case 2: slices of the wave with \(\omega = 32\pi \) at \(x=0.25\) (km), \(y=0.25\) (km) and \(z=0.25\) (km), respectively. Top: real part; Bottom: imaginary part. Left: \(U_1\); Right: \(U_2\) (Color figure online)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobs, M., Luo, S. Asymptotic Solutions for High Frequency Helmholtz Equations in Anisotropic Media with Hankel Functions. J Sci Comput 80, 808–833 (2019). https://doi.org/10.1007/s10915-019-00957-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00957-8

Keywords

Mathematics Subject Classification

Navigation