Skip to main content
Log in

Linearized Galerkin FEMs for Nonlinear Time Fractional Parabolic Problems with Non-smooth Solutions in Time Direction

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A Newton linearized Galerkin finite element method is proposed to solve nonlinear time fractional parabolic problems with non-smooth solutions in time direction. Iterative processes or corrected schemes become dispensable by the use of the Newton linearized method and graded meshes in the temporal direction. The optimal error estimate in the \(L^2\)-norm is obtained without any time step restrictions dependent on the spatial mesh size. Such unconditional convergence results are proved by including the initial time singularity into concern, while previous unconditional convergent results always require continuity and boundedness of the temporal derivative of the exact solution. Numerical experiments are conducted to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agarwal, P.R., Berezansky, L., Braverman, E., Domoshnitsky, A.: Nonoscillation Theory of Functional Differential Equations with Applications. Springer, New York (2012)

    Book  MATH  Google Scholar 

  2. Bouchaud, J., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  3. Brunner, H.: The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math. Comput. 45, 417–437 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 229, 6613–6622 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75, 673–696 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.E.: Implicit–explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38, A3070–A3093 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, X., Di, Y., Duan, J., Li, D.: Linearized compact ADI schemes for nonlinear time-fractional Schrodinger equations. Appl. Math. Lett. 84, 160–167 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Wu, L.: Second Order Elliptic Equations and Elliptic Systems, Translations of Mathematical Monographs 174. AMS, USA (1998)

  9. Chen, F., Xu, Q., Hesthaven, J.S.: A multi-domain spectral method for time-fractional differential equations. J. Comput. Phys. 293, 157–172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hou, D., Hasan, M.T., Xu, X.: Müntz spectral methods for the time-fractional diffusion equation. Comput. Methods Appl. Math. 18, 43–62 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM. J. Sci. Comput. 39, A3129–A3152 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM. J. Numer. Anal. 56, 1–23 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  14. Le, K.N., Mclean, W., Mustapha, K.: Numerical solution of the time-fractional Fokker–Planck equation with general forcing. SIAM. J. Numer. Anal. 54, 1763–1784 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, B., Gao, H., Sun, W.: Unconditionally optimal error estimate of a Crank–Nicolson Galerkin method for nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, D., Liao, H., Sun, W., Wang, J., Zhang, J.: Analysis of L1-Galerkin FEMs for time fractional nonlinear parabolic problems. Commun. Comput. Phys. 24, 86–103 (2018)

    MathSciNet  Google Scholar 

  19. Li, D., Wang, J.: Unconditionally optimal error analysis of Crank–Nicolson Galerkin FEMs for a strongly nonlinear parabolic system. J. Sci. Comput. 72, 892–915 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, D., Wang, J., Zhang, J.: Unconditionally convergent \(L1\)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM. J. Sci. Comput. 39, A3067–A3088 (2017)

    Article  MATH  Google Scholar 

  21. Li, D., Zhang, J., Zhang, Z.: Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction–subdiffusion equations. J. Sci. Comput. 76, 848–866 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, H., Wu, X., Zhang, J.: Numerical solution of the time-fractional sub-diffusion equation on an unbounded domain in two-dimensional space. East Asia J. Appl. Math. 7, 439–454 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liao, H., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction–subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Logg, A., Mardal, K., Wells, G. (eds.): Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)

    MATH  Google Scholar 

  25. McLean, W.: Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 52, 123–138 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mustapha, K.: Time-stepping discontinuous Galerkin methods for fractional diffusion problems. Numer. Math. 130, 497–516 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mustapha, K.: FEM for time-fractional diffusion equations, novel optimal error analysis. Math. Comput. 87, 2259–2272 (2018)

    Article  MATH  Google Scholar 

  28. Mustapha, K., Mustapha, H.: A second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel. IMA. J. Numer. Anal. 30, 555–578 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen, C., Shen, J.: A space-time Petrov–Galerkin spectral method for time fractional diffusion. Numer. Math. Theor. Methods Appl. 11, 854–876 (2018)

    Article  MathSciNet  Google Scholar 

  31. Si, Z., Wang, J., Sun, W.: Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations. Numer. Math. 134, 139–161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stynes, M., Gracia, J.L.: Preprocessing schemes for fractional-derivative problems to improve their convergence rates. Appl. Math. Lett. 74, 187–192 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  35. Wu, C., Sun, W.: Analysis of Galerkin FEMs for mixed formulation of time-dependent Ginzburg–Landau equations under temporal gauge. SIAM. J. Numer. Anal. 56, 1291–1312 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xing, Y., Yan, Y.: A higher order numerical method for time fractional partial differential equations with nonsmooth data. J. Comput. Phys. 357, 305–323 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM. J. Numer. Anal. 56, 210–227 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yuste, S.B., Acedo, L., Lindenberg, K.: Reaction front in an \(A+B\rightarrow C\) reaction–subdiffusion process. Phys. Rev. E. 69, 036126 (2004)

    Article  Google Scholar 

  39. Zhang, Y., Sun, Z., Liao, H.: Finite difference methods for time fractional diffusion equations on no-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhou, X., Xu, C.: Well-posedness of a kind of nonlinear coupled system of fractional differential equations. Sci. China Math. 59, 1209–1220 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengda Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported in part by the National Natural Science Foundation of China (NSFC) Grants Nos. 11771162, 11726603, 11871092, 11471031, 91430216, and U1530401.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Wu, C. & Zhang, Z. Linearized Galerkin FEMs for Nonlinear Time Fractional Parabolic Problems with Non-smooth Solutions in Time Direction. J Sci Comput 80, 403–419 (2019). https://doi.org/10.1007/s10915-019-00943-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00943-0

Keywords

Mathematics Subject Classification

Navigation