Babuska, I.M., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 435, 1005–1034 (2007)
MathSciNet
Article
MATH
Google Scholar
Babuska, I., Tempone, R., Zouraris, G.: Galerkin finite element approximations of stochastic elliptic differential equations. SIAM J. Numer. Anal. 42, 800–825 (2004)
MathSciNet
Article
MATH
Google Scholar
Balanis, C.A.: Advanced Engineering Electromagnetics, 2nd edn. Wiley, Hoboken, NJ (2012)
Google Scholar
Benner, P., Schneider, J.: Uncertainty quantification for Maxwell’s equations using stochastic collocation and model order reduction. Int. J. Uncertain. Quantif. 5(3), 195–208 (2015)
MathSciNet
Article
Google Scholar
Cao, Y.: On convergence rate of Wiener–Ito expansion for generalized random variables. Stoch. Int. J. Probab. Stoch. Process. 78(3), 179–187 (2006)
MathSciNet
Article
MATH
Google Scholar
Chauviére, C., Hesthaven, J.S., Lurati, L.: Computational modeling of uncertainty in time-domain electromagnetics. SIAM J. Sci. Comput. 28(2), 751–775 (2006)
MathSciNet
Article
MATH
Google Scholar
Deang, J., Du, Q., Gunzburger, M.D.: Modeling and computation of random thermal fluctuations and material defects in the Ginzburg–Landau model for superconductivity. J. Comput. Phys. 181, 45–67 (2002)
MathSciNet
Article
MATH
Google Scholar
Deb, M.K., Babuska, I.M., Oden, J.T.: Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Eng. 190, 6359–6372 (2001)
MathSciNet
Article
MATH
Google Scholar
Dostert, P., Efendiev, Y., Hou, T.Y.: Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification. Comput. Methods Appl. Mech. Eng. 197, 3445–3455 (2008)
MathSciNet
Article
MATH
Google Scholar
Elman, H.C., Furnival, D.G., Powell, C.E.: \(H({div})\) preconditioning for a mixed finite element formulation of the diffusion problem with random data. Math. Comput. 79, 733–760 (2010)
MathSciNet
Article
MATH
Google Scholar
Fouque, J., Garnier, J., Papanicolaou, G., Solna, K.: Wave Propogation and Time Reversal in Randomly Layered Media. Springer, Berlin (2007)
MATH
Google Scholar
Galvis, J., Sarkis, M.: Approximating infinity-dimensional stochastic Darcy’s equations without uniform ellipticity. SIAM J. Numer. Anal. 47(5), 3624–3651 (2009)
MathSciNet
Article
MATH
Google Scholar
Ghanem, R., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)
Book
MATH
Google Scholar
Graham, I.G., Kuo, F.Y., Nichols, J.A., Scheichl, R., Schwab, Ch., Sloan, I.H.: Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131, 329–368 (2015)
MathSciNet
Article
MATH
Google Scholar
Gunzburger, M.D., Webster, C.G., Zhang, G.: Stochastic finite element methods for partial differential equations with random input data. Acta Numer. 23, 521–650 (2014)
MathSciNet
Article
MATH
Google Scholar
Jin, S., Xiu, D., Zhu, X.: A well-balanced stochastic Galerkin method for scalar hyperbolic balance laws with random inputs. J. Sci. Comput. 67(3), 1198–1218 (2016)
MathSciNet
Article
MATH
Google Scholar
Kovacs, M., Larsson, S., Saedpanah, F.: Finite element approximation of the linear stochastic wave equation with additive noise. SIAM J. Numer. Anal. 48, 408–427 (2010)
MathSciNet
Article
MATH
Google Scholar
Li, J., Fang, Z.: Analysis and application of stochastic collocation methods for Maxwell’s equations with random inputs. Adv. Appl. Math. Mech. 10, 1305–1326 (2018)
MathSciNet
Article
Google Scholar
Li, J., Fang, Z., Lin, G.: Regularity analysis of metamaterial Maxwells equations with random coefficients and initial conditions. Comput. Methods Appl. Mech. Eng. 335, 24–51 (2018)
MathSciNet
Article
Google Scholar
Li, J., Huang, Y.: Time-Domain Finite Element Methods for Maxwell’s Equations in Metamaterials. Springer Series in Computational Mathematics, vol. 43. Springer, Berlin (2013)
Book
MATH
Google Scholar
Li, J., Machorro, E.A., Shields, S.: Numerical study of signal propagation in corrugated coaxial cables. J. Comput. Appl. Math. 309, 230–243 (2017)
MathSciNet
Article
MATH
Google Scholar
Lord, G., Powell, C.E., Shardlow, T.: An Introduction to Computational Stochastic PDEs. Cambridge University Press, Cambridge (2014)
Book
MATH
Google Scholar
Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)
Book
MATH
Google Scholar
Motamed, M., Nobile, F., Tempone, R.: A stochastic collocation method for the second order wave equation with a discontinuous random speed. Numer. Math. 123, 493–536 (2013)
MathSciNet
Article
MATH
Google Scholar
Musharbash, E., Nobile, F., Zhou, T.: Error analysis of the dynamically orthogonal approximation of time dependent random PDEs. SIAM J. Sci. Comput. 37(2), A776–A810 (2015)
MathSciNet
Article
MATH
Google Scholar
Narayan, A., Zhou, T.: Stochastic collocation methods on unstructured meshes. Commun. Comput. Phys. 18, 1–36 (2015)
MathSciNet
Article
MATH
Google Scholar
Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)
MathSciNet
Article
MATH
Google Scholar
Oden, J.T., Belytschko, T., Babuska, I., Hughes, T.J.R.: Research directions in computational mechanics. Comput. Methods Appl. Mech. Eng. 192, 913–922 (2003)
MathSciNet
Article
MATH
Google Scholar
Schwab, C., Gittelson, C.J.: Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numer. 20, 291–467 (2011)
MathSciNet
Article
MATH
Google Scholar
Tang, T., Zhou, T.: Convergence analysis for stochastic collocation methods to scalar hyperbolic equations with random wave speed. Commun. Comput. Phys. 8(1), 226–248 (2010)
MathSciNet
MATH
Google Scholar
Tryoen, J., LeMaitre, O., Ndjinga, M., Ern, A.: Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 229, 6485–6511 (2010)
MathSciNet
Article
MATH
Google Scholar
Wan, X., Karniadakis, G.E.: Long-term behavior of polynomial chaos in stochastic flow simulations. Comput. Methods Appl. Mech. Eng. 195, 5582–5596 (2006)
MathSciNet
Article
MATH
Google Scholar
Wu, K., Tang, H., Xiu, D.: A stochastic Galerkin method for first-order quasilinear hyperbolic systems with uncertainty. J. Comput. Phys. 345, 224–244 (2017)
MathSciNet
Article
MATH
Google Scholar
Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton (2010)
Book
MATH
Google Scholar
Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)
MathSciNet
Article
MATH
Google Scholar
Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)
MathSciNet
Article
MATH
Google Scholar
Xiu, D., Shen, J.: Efficient stochastic Galerkin methods for random diffusion equations. J. Comput. Phys. 228(2), 266–281 (2009)
MathSciNet
Article
MATH
Google Scholar
Zhou, T.: Stochastic Galerkin methods for elliptic interface problems with random input. J. Comput. Appl. Math. 236, 782–792 (2011)
MathSciNet
Article
MATH
Google Scholar
Zhou, T., Tang, T.: Galerkin methods for stochastic hyperbolic problems using bi-orthogonal polynomials. J. Sci. Comput. 51, 274–292 (2012)
MathSciNet
Article
MATH
Google Scholar