Skip to main content
Log in

Fractional Sensitivity Equation Method: Application to Fractional Model Construction

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Fractional differential equations provide a tractable mathematical framework to describe anomalous behavior in complex physical systems, yet they introduce new sensitive model parameters, i.e. derivative orders, in addition to model coefficients. We formulate a sensitivity analysis of fractional models by developing a fractional sensitivity equation method. We obtain the adjoint fractional sensitivity equations, in which we present a fractional operator associated with logarithmic-power law kernel. We further construct a gradient-based optimization algorithm to compute an accurate parameter estimation in fractional model construction. We develop a fast, stable, and convergent Petrov–Galerkin spectral method to numerically solve the coupled system of original fractional model and its corresponding adjoint fractional sensitivity equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2003)

    Book  Google Scholar 

  2. West, B.J.: Fractional Calculus View of Complexity: Tomorrows Science. CRC Press, Boca Raton (2016)

    Book  MATH  Google Scholar 

  3. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  4. Suzuki, J.L., Zayernouri, M., Bittencourt, M.L., Karniadakis, G.E.: Fractional-order uniaxial visco-elasto-plastic models for structural analysis. Comput. Methods Appl. Mech. Eng. 308, 443 (2016)

    Article  MathSciNet  Google Scholar 

  5. Meral, F.C., Royston, T.J., Magin, R.: Fractional calculus in viscoelasticity: an experimental study. Commun. Nonlinear Sci. Numer. Simul. 15(4), 939 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baeumer, B., Benson, D.A., Meerschaert, M., Wheatcraft, S.W.: Subordinated advection-dispersion equation for contaminant transport. Water Resour. Res. 37(6), 1543 (2001)

    Article  Google Scholar 

  7. Jaishankar, A., McKinley, G.H.: A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids. J. Rheol. (1978-present) 58(6), 1751 (2014)

    Article  Google Scholar 

  8. Sreenivasan, K.R., Antonia, R.A.: The phenomenology of small-scale turbulence. Ann. Rev. Fluid Mech. 29(1), 435 (1997)

    Article  MathSciNet  Google Scholar 

  9. Jha, R., Kaw, P.K., Kulkarni, D.R., Parikh, J.C., Team, A.: Evidence of Lévy stable process in tokamak edge turbulence. Phys. Plasmas (1994-present) 10(3), 699 (2003)

    Article  Google Scholar 

  10. del Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Fractional diffusion in plasma turbulence. Phys. Plasmas (1994-present) 11(8), 3854 (2004)

    Article  Google Scholar 

  11. Jaishankar, A., McKinley, G.H.: Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations. Proc. R. Soc. A Math. Phys. Eng. Sci. 469(2149), 20120284 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Naghibolhosseini, M.: Estimation of outer-middle ear transmission using DPOAEs and fractional-order modeling of human middle ear. In: Ph.D. Thesis, City University of New York, NY (2015)

  13. Naghibolhosseini, M., Long, G.R.: Fractional-order modelling and simulation of human ear. Int. J. Comput. Math. 95(6–7), 1257 (2018)

    Article  MathSciNet  Google Scholar 

  14. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59(5), 1586 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Anastasio, T.J.: The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybern. 72(1), 69 (1994)

    Article  Google Scholar 

  16. Djordjević, V.D., Jarić, J., Fabry, B., Fredberg, J.J., Stamenović, D.: Fractional derivatives embody essential features of cell rheological behavior. Ann. Biomed. Eng. 31(6), 692 (2003)

    Article  Google Scholar 

  17. Le Méhauté, A.: Fractal Geometries Theory and Applications. CRC Press, Boca Raton (1991)

    MATH  Google Scholar 

  18. Duarte, F.B., Machado, J.T.: Chaotic phenomena and fractional-order dynamics in the trajectory control of redundant manipulators. Nonlinear Dyn. 29(1), 315 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Martins, J., Kroo, I., Alonso, J.: In: Proceedings of the 38th Aerospace Sciences Meeting (Reno, NV, 2000), AIAA, pp. 2000–0689

  20. Sobieski, J.S.: Sensitivity of complex, internally coupled systems. AIAA J. 28, 153–160 (1990)

    Article  Google Scholar 

  21. Liu, S., Canfield, R.A.: Two forms of continuum shape sensitivity method for fluid-structure interaction problems. J. Fluids Struct. 62, 46 (2016)

    Article  Google Scholar 

  22. Zayernouri, M., Metzger, M.: Coherent features in the sensitivity field of a planar mixing layer. Phys. Fluids (1994-present) 23(2), 025105 (2011)

    Article  Google Scholar 

  23. Stanford, B., Beran, P., Kurdi, M.: Adjoint sensitivities of time-periodic nonlinear structural dynamics via model reduction. Comput. Struct. 88(19), 1110 (2010)

    Article  Google Scholar 

  24. Bischof, C., Khademi, P., Mauer-Oats, A., Carle, A.: Adifor 2.0: automatic differentiation of Fortran 77 program. In: IEEE Computational Science and Engineering (1996)

  25. Bischof, C., Roh, L., Mauer-Oats, A.: ADIC: an extensible automatic differentiation tool for ANSI-C. Softw. Pract. Exp. 27, 1427–1456 (1997)

    Article  Google Scholar 

  26. Bischof, C., Land, B., Vehreschild, A.: Proceeding in Applied Mathematics and Mechanics, vol. 2, pp. 50–53 (2003)

  27. Van Keulen, F., Haftka, R.T., Kim, N.H.: Review of options for structural design sensitivity analysis, part 1: linear systems. Comput. Methods Appl. Mech. Eng. 194(30), 3213 (2005)

    Article  MATH  Google Scholar 

  28. Wei, H., Chen, W., Sun, H., Li, X.: A coupled method for inverse source problem of spatial fractional anomalous diffusion equations. Inverse Problems Sci. Eng.: Former. Inverse Problems Eng. 18(7), 945 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chakraborty, P., Meerschaert, M.M., Lim, C.Y.: Parameter estimation for fractional transport: A particle-tracking approach. Water Resour. Res. 45, W10415 (2009). https://doi.org/10.1029/2008WR007577

    Article  Google Scholar 

  30. Cho, Y., Kim, I., Sheen, D.: A fractional-order model for minmod millennium. Math. Biosci. 262, 36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kelly, J.F., Bolster, D., Meerschaert, M.M., Drummond, J.D., Packman, A.I.: Fracfit: a robust parameter estimation tool for fractional calculus models. Water Resour. Res. 53(3), 2559 (2017)

    Article  Google Scholar 

  32. Lim, C.Y., Meerschaert, M.M., Scheffler, H.P.: Parameter estimation for operator scaling random fields. J. Multivar. Anal. 123, 172 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ghazizadeh, H.R., Azimi, A., Maerefat, M.: An inverse problem to estimate relaxation parameter and order of fractionality in fractional single-phase-lag heat equation. Int. J. Heat Mass Transf. 55(7), 2095 (2012)

    Article  Google Scholar 

  34. Chen, S., Liu, F., Jiang, X., Turner, I., Burrage, K.: Fast finite difference approximation for identifying parameters in a two-dimensional space-fractional nonlocal model with variable diffusivity coefficients. SIAM J. Numer. Anal. 54(2), 606 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yu, B., Jiang, X.: Numerical identification of the fractional derivatives in the two-dimensional fractional cable equation. J. Sci. Comput. 68(1), 252 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yu, B., Jiang, X., Qi, H.: Numerical method for the estimation of the fractional parameters in the fractional mobile/immobile advection-diffusion model. Int. J. Comput. Math. 95, 1–20 (2017)

    MathSciNet  Google Scholar 

  37. Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29(1–4), 129 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, H., Wang, K., Sircar, T.: A direct \(o (n log^2 n)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229(21), 8095 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, K., Wang, H.: A fast characteristic finite difference method for fractional advection-diffusion equations. Adv. Water Resour. 34(7), 810 (2011)

    Article  Google Scholar 

  42. Cao, J., Xu, C.: A high order schema for the numerical solution of the fractional ordinary differential equations. J. Comput. Phys. 238(1), 154 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zeng, F., Li, C., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37(1), A55 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zayernouri, M., Matzavinos, A.: Fractional Adams-Bashforth/Moulton methods: an application to the fractional Keller–Segel chemotaxis system. J. Comput. Phys. 317, 1–14 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rawashdeh, E.: Numerical solution of fractional integro-differential equations by collocation method. Appl. Math. Comput. 176(1), 1 (2006)

    MathSciNet  MATH  Google Scholar 

  46. Khader, M.: On the numerical solutions for the fractional diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 16(6), 2535 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Khader, M., Hendy, A.: The approximate and exact solutions of the fractional-order delay differential equations using legendre pseudospectral method. Int. J. Pure Appl. Math. 74(3), 287 (2012)

    MATH  Google Scholar 

  48. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8(5), 1016 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Chen, S., Shen, J., Wang, L.: Generalized Jacobi functions and their applications to fractional differential equations. arXiv:1407.8303 (2014)

  51. Wang, H., Zhang, X.: A high-accuracy preserving spectralGalerkin method for the Dirichlet boundary-value problem of variable-coefficient conservative fractional diffusion equations. J. Comput. Phys. 281, 67 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zayernouri, M., Karniadakis, G.E.: Fractional Sturm–Liouville eigen-problems: theory and numerical approximations. J. Comput. Phys. 47–3, 2108 (2013)

    MathSciNet  MATH  Google Scholar 

  54. Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: Tempered fractional Sturm–Liouville eigenproblems. SIAM J. Sci. Comput. 37(4), A1777 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Samiee, M., Zayernouri, M., Meerschaert, M.M.: A unified spectral method for FPDEs with two-sided derivatives; part I: a fast solver. J. Comput. Phys. (2018). https://doi.org/10.1016/j.jcp.2018.02.014

  56. Samiee, M., Kharazmi, E., Zayernouri, M.: Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016. Springer, New York, pp. 651–667

  57. Kharazmi, E., Zayernouri, M., Karniadakis, G.E.: Petrov–Galerkin and spectral collocation methods for distributed order differential equations. SIAM J. Sci. Comput. 39(3), A1003 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  58. Kharazmi, E., Zayernouri, M., Karniadakis, G.E.: A Petrov–Galerkin spectral element method for fractional elliptic problems. Comput. Methods Appl. Mech. Eng. 324, 512–536 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  59. Kharazmi, E., Zayernouri, M.: Fractional pseudo-spectral methods for distributed-order fractional PDES. Int. J. Comput. Math. 95(6–7), 1340–1361 (2018)

    Article  MathSciNet  Google Scholar 

  60. Lischke, A., Zayernouri, M., Karniadakis, G.E.: A Petrov–Galerkin spectral method of linear complexity for fractional multiterm ODEs on the half line. SIAM J. Sci. Comput. 39(3), A922 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  61. Samiee, M., Zayernouri, M., Meerschaert, M.M.: A unified spectral method for FPDEs with two-sided derivatives; part II: Stability, and error analysis. J. Comput. Phys. (2018). https://doi.org/10.1016/j.jcp.2018.07.041

  62. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  63. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  64. Ervin, V.J., Roop, J.P.: Variational solution of fractional advection dispersion equations on bounded domains in \(\text{ R }^d\). Numer. Methods Partial Differ. Equ. 23(2), 256 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  65. Atanackovic, T.M., Pilipovic, S., Stankovic, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. Wiley, New York (2014)

    Book  MATH  Google Scholar 

  66. Afzali, F., Kapucu, O., Feeny, B.F.: In: ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers (2016)

  67. Afzali, F., Acar, G.D., Feeny, B.F.: In: ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2017), pp. V008T12A050–V008T12A050

  68. Zamani, V., Kharazmi, E., Mukherjee, R.: Asymmetric post-flutter oscillations of a cantilever due to a dynamic follower force. J. Sound Vib. 340, 253 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Zayernouri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the AFOSR Young Investigator Program (YIP) Award (FA9550-17-1-0150).

Appendices

Proof of Lemma 1

Part A: \(\sigma \in (0,1)\). We start from the \(RL-PL\) definition, given in (8).

$$\begin{aligned} {}_{a}^{RL-LP}{\mathcal {D}}_{x}^{\sigma } u&= \frac{1}{{\varGamma }(1-\sigma )} \frac{d}{dx} \int _{a}^{x} \, (x - s)^{-\sigma } \, \log (x-s) \, u(s) \, ds, \, \text { (integrate by parts)} \nonumber \\&= \frac{1}{{\varGamma }(1-\sigma )} \frac{d}{dx} \left\{ \frac{u(s) \, (x-s)^{1-\sigma }}{(-\sigma +1)^2} (1-(-\sigma +1) \, \log (x-s)) \Bigg |_{s=a}^{s=x}\right. \nonumber \\&\left. \quad - \int _{a}^{x} \, \frac{(x - s)^{-\sigma +1}}{(-\sigma +1)^2} \, (1-(-\sigma +1) \, \log (x-s)) \, u'(s) \, ds \right\} ,\nonumber \\&= \frac{1}{{\varGamma }(1-\sigma )} \frac{d}{dx} \left\{ \frac{u(a) \, (x-a)^{1-\sigma }}{(-\sigma +1)^2} (1-(-\sigma +1) \, \log (x-a))\right. \nonumber \\&\left. \quad -\,\int _{a}^{x} \, \frac{(x - s)^{-\sigma +1}}{(-\sigma +1)^2} \, (1-(-\sigma +1) \, \log (x-s)) \, u'(s) \, ds \right\} ,\nonumber \\&=\frac{u(a)}{{\varGamma }(1-\sigma )} \, \frac{\log (x-a)}{(x-a)^{\sigma }} \nonumber \\&\quad +\, \frac{1}{{\varGamma }(1-\sigma )} \int _{a}^{x} \, \frac{\log (x-s)}{(x - s)^{-\sigma }} \, u'(s) \, ds, \, \text { (by Leibnitz rule)} \nonumber \\&= \frac{u(a)}{{\varGamma }(1-\sigma )} \, \frac{\log (x-a)}{(x-a)^{\sigma }} + {}_{a}^{C-LP}{\mathcal {D}}_{x}^{\sigma } u \end{aligned}$$
(78)

Part B: \(\sigma \in (1,2)\). Similarly, we start from the \(RL-PL\) definition, given in (8).

$$\begin{aligned}&{}_{a}^{RL-LP}{\mathcal {D}}_{x}^{\sigma } u = \frac{1}{{\varGamma }(2-\sigma )} \frac{d^2}{dx^2} \int _{a}^{x} \, (x - s)^{-\sigma +1} \, \log (x-s) \, u(s) \, ds, \, \text { (integrate by parts twice)} \nonumber \\&\quad = \frac{1}{{\varGamma }(2-\sigma )} \frac{d^2}{dx^2} \left\{ \frac{u(s) \, (x-s)^{-\sigma +2}}{(-\sigma +2)^2} (1-(-\sigma +2)\log (x-s)) \Bigg |_{s=a}^{s=x}\right. \nonumber \\&\left. \qquad - \frac{u'(s) \, (x-s)^{-\sigma +3}}{(-\sigma +2)^2(-\sigma +3)^2} \left( 1-2(-\sigma +3)+(-\sigma +3)(-\sigma +2)\log (x-s) \right) \Bigg |_{s=a}^{s=x}\right. \nonumber \\&\left. \qquad + \int _{a}^{x} \, \frac{(x-s)^{-\sigma +3}}{(-\sigma +2)^2(-\sigma +3)^2}\right. \left. \left( 1-2(-\sigma +3)+(-\sigma +3)(-\sigma +2)\log (x-s) \right) \, u''(s) \, ds \phantom {\left\{ \frac{u(s) \, (x-s)^{-\sigma +2}}{(-\sigma +2)^2} (1-(-\sigma +2)\log (x-s)) \Bigg |_{s=a}^{s=x}\right. } \right\} , \nonumber \\&\quad = \frac{1}{{\varGamma }(2-\sigma )} \frac{d^2}{dx^2} \left\{ \frac{u(a) \, (x-a)^{-\sigma +2}}{(-\sigma +2)^2} (1-(-\sigma +2)\log (x-a))\right. \nonumber \\&\left. \qquad - \frac{u'(a) \, (x-a)^{-\sigma +3}}{(-\sigma +2)^2(-\sigma +3)^2} \left( 1-2(-\sigma +3)+(-\sigma +3)(-\sigma +2)\log (x-a) \right) \right. \nonumber \\&\left. \qquad + \int _{a}^{x} \, \frac{(x-s)^{-\sigma +3}}{(-\sigma +2)^2(-\sigma +3)^2} \right. \left. \left( 1-2(-\sigma +3)+(-\sigma +3)(-\sigma +2)\log (x-s) \right) \, u''(s) \, ds \phantom {\left\{ \frac{u(s) \, (x-s)^{-\sigma +2}}{(-\sigma +2)^2} (1-(-\sigma +2)\log (x-s)) \Bigg |_{s=a}^{s=x}\right. } \right\} ,\nonumber \\&\quad = \frac{u(a)}{{\varGamma }(2-\sigma )} \frac{1+(-\sigma +1)\log (x-a)}{(x-a)^{\sigma }} + \frac{u'(a)}{{\varGamma }(2-\sigma )} \frac{\log (x-a)}{(x-a)^{\sigma -1}} \nonumber \\&\qquad + \frac{1}{{\varGamma }(2-\sigma )} \int _{a}^{x} \, (x-s)^{-\sigma +1} \, \log (x-s) \, u''(s) \, ds , \, \text { (by Leibnitz rule)} \nonumber \\&\quad = \frac{u(a)}{{\varGamma }(1-\sigma )} \frac{1+(-\sigma +1)\log (x-a)}{(x-a)^{\sigma }} + \frac{u'(a)}{{\varGamma }(1-\sigma )} \frac{\log (x-a)}{(x-a)^{\sigma -1}} + {}_{a}^{C-PL}{\mathcal {D}}_{x}^{\sigma } u. \end{aligned}$$
(79)

Proof of Lemma 2

In Lemma 2.1 in [49] and also in [64], it is shown that \(\Vert \cdot \Vert _{{^l}H^{\sigma }_{}({\varLambda })}\) and \(\Vert \cdot \Vert _{{^r}H^{\sigma }_{}({\varLambda })}\) are equivalent. Therefore, for \(u \in H^{\sigma }_{}({\varLambda })\), there exist positive constants \(C_1\) and \(C_2\) such that

$$\begin{aligned} \Vert u \Vert _{{}H^{\sigma }_{}({\varLambda })} \le C_1 \Vert u \Vert _{{^l}H^{\sigma }_{}({\varLambda })}, \quad \Vert u \Vert _{{}H^{\sigma }_{}({\varLambda })} \le C_2 \Vert u \Vert _{{^r}H^{\sigma }_{}({\varLambda })}, \end{aligned}$$
(80)

which leads to

$$\begin{aligned} \Vert u \Vert _{{}H^{\sigma }_{}({\varLambda })}^2&\le C_1^2 \Vert u \Vert _{{^l}H^{\sigma }_{}({\varLambda })}^2 + C_2^2 \Vert u \Vert _{{^r}H^{\sigma }_{}({\varLambda })}^2 , \nonumber \\&= C_1^2 \,\Vert {}_{a}^{}{\mathcal {D}}_{x}^{\sigma }\, (u)\Vert _{L^2({\varLambda })}^2+ C_2^2 \,\Vert {}_{x}^{}{\mathcal {D}}_{b}^{\sigma }\, (u)\Vert _{L^2({\varLambda })}^2+(C_1^2+C_2^2)\, \Vert u \Vert _{L^2({\varLambda })}^2 , \nonumber \\&\le \tilde{C}_1 \,\Vert u \Vert _{{^c}H^{\sigma }_{}({\varLambda })}^2, \end{aligned}$$
(81)

where \(\tilde{C}_1\) is a positive constant. Similarly, we can show that \(\Vert u \Vert _{{^c}H^{\sigma }_{}({\varLambda })}^2 \le \tilde{C}_2 \, \Vert u \Vert _{{}H^{\sigma }_{}({\varLambda })}\), where \(\tilde{C}_2\) is a positive constant.

Proof of Lemma 4

\(\mathcal {X}_1\) is endowed with the norm \(\Vert \cdot \Vert _{\mathcal {X}_1}\), where \(\Vert \cdot \Vert _{\mathcal {X}_1}\equiv \Vert \cdot \Vert _{{^c}H^{\beta _1/2}_{}({\varLambda }_1)}\) by Lemma 2. Moreover, \(\mathcal {X}_2\) is associated with the norm

$$\begin{aligned} \Vert \cdot \Vert _{\mathcal {X}_2} \equiv \left\{ \Vert \cdot \Vert _{{^c}H^{\beta _2/2}_0 ((a_2,b_2); L^2({\varLambda }_{1}))}^2 + \Vert \cdot \Vert _{ L^2((a_2,b_2); \mathcal {X}_{1})}^2 \right\} ^{\frac{1}{2}}, \end{aligned}$$
(82)

where

$$\begin{aligned}&\Vert u \Vert _{{^c}H^{\beta _2/2}_0 ((a_2,b_2); L^2({\varLambda }_{1}))}^2 \nonumber \\ {}&\quad = \int _{a_1}^{b_1}\left( \int _{a_2}^{b_2}\, \vert {}_{a_2}^{}{\mathcal {D}}_{x_2}^{\beta _2/2} u \vert ^2 \, dx_2 + \int _{a_2}^{b_2}\, \vert {}_{x_2}^{}{\mathcal {D}}_{b_2}^{\beta _2/2} u \vert ^2 \, dx_2 + \int _{a_2}^{b_2}\, \vert u \vert ^2 \, dx_2 \right) \,dx_1 \nonumber \\&\quad = \int _{a_1}^{b_1}\int _{a_2}^{b_2}\, \vert {}_{a_2}^{}{\mathcal {D}}_{x_2}^{\beta _2/2} u \vert ^2 \, dx_2 dx_1 {+} \int _{a_1}^{b_1}\int _{a_2}^{b_2}\, \vert {}_{x_2}^{}{\mathcal {D}}_{b_2}^{\beta _2/2} u \vert ^2 \, dx_2 dx_1 + \int _{a_1}^{b_1} \int _{a_2}^{b_2}\, \vert u \vert ^2 \, dx_2 dx_1 \nonumber \\&\quad = \Vert {}_{x_2}^{}{\mathcal {D}}_{b_2}^{\beta _2/2}\, (u)\Vert _{L^2({\varLambda }_d)}^2+\Vert {}_{a_2}^{}{\mathcal {D}}_{x_2}^{\beta _2/2}\, (u)\Vert _{L^2({\varLambda }_d)}^2+\Vert u \Vert _{L^2({\varLambda }_d)}^2, \end{aligned}$$
(83)

and

$$\begin{aligned}&\Vert u \Vert _{L^2((a_2,b_2); \mathcal {X}_{1})}^2\nonumber \\&\quad = \int _{a_2}^{b_2}\, \left( \int _{a_1}^{b_1}\, \vert {}_{a_1}^{}{\mathcal {D}}_{x_1}^{\beta _1/2} u \vert ^2 \, dx_1 + \int _{a_1}^{b_1}\, \vert {}_{x_1}^{}{\mathcal {D}}_{b_1}^{\beta _1/2} u \vert ^2 \, dx_1 + \int _{a_1}^{b_1}\, \vert u \vert ^2 \, dx_1 \right) \,dx_2 \nonumber \\&\quad = \int _{a_2}^{b_2}\int _{a_1}^{b_1} \vert {}_{a_1}^{}{\mathcal {D}}_{x_1}^{\beta _1/2} u \vert ^2 dx_1 dx_2 + \int _{a_2}^{b_2}\int _{a_1}^{b_1} \vert {}_{x_1}^{}{\mathcal {D}}_{b_1}^{\beta _1/2} u \vert ^2 dx_1 dx_2 + \int _{a_2}^{b_2}\int _{a_1}^{b_1} \vert u \vert ^2 dx_1 dx_2\nonumber \\&\quad = \Vert {}_{x_1}^{}{\mathcal {D}}_{b_1}^{\beta _1/2}\, u\Vert _{L^2({\varLambda }_2)}^2+\Vert {}_{a_1}^{}{\mathcal {D}}_{x_1}^{\beta _1/2}\, u\Vert _{L^2({\varLambda }_2)}^2+\Vert u \Vert _{L^2({\varLambda }_2)}^2. \end{aligned}$$
(84)

We use the mathematical induction to carry out the proof. Therefore, we assume the following equality holds

$$\begin{aligned} \Vert \cdot \Vert _{\mathcal {X}_{k-1}} \equiv \left\{ \sum _{i=1}^{k-1} \left( \Vert {}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2}\, (\cdot )\Vert _{L^2({\varLambda }_{k-1})}^2+\Vert {}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2}\, (\cdot )\Vert _{L^2({\varLambda }_{k-1})}^2 \right) + \Vert \cdot \Vert _{L^2({\varLambda }_{k-1})}^2 \right\} ^{\frac{1}{2}}. \end{aligned}$$
(85)

Since,

$$\begin{aligned}&\Vert u \Vert _{{^c}H^{\beta _k/2}_0 ((a_k,b_k); L^2({\varLambda }_{k-1}))}^2 \\&\quad = \int _{{\varLambda }_{k-1}}^{}\, \left( \int _{a_k}^{b_k}\, \vert {}_{a_k}^{}{\mathcal {D}}_{x_k}^{\beta _k/2} u \vert ^2 \, dx_k + \int _{a_k}^{b_k}\, \vert {}_{x_k}^{}{\mathcal {D}}_{b_k}^{\beta _k/2} u \vert ^2 \, dx_k + \int _{a_k}^{b_k}\, \vert u \vert ^2 \, dx_k \right) \,d{\varLambda }_{k-1} \\&\quad = \int _{{\varLambda }_{k-1}}^{}\int _{a_k}^{b_k}\, \vert {}_{a_k}^{}{\mathcal {D}}_{x_k}^{\beta _k/2} u \vert ^2 \, dx_k d{\varLambda }_{k-1} + \int _{{\varLambda }_{k-1}}^{}\int _{a_k}^{b_k}\, \vert {}_{x_k}^{}{\mathcal {D}}_{b_k}^{\beta _k/2} u \vert ^2 \, dx_k d{\varLambda }_{k-1} \\&\qquad + \int _{{\varLambda }_{k-1}}^{}\int _{a_k}^{b_k}\, \vert u \vert ^2 \, dx_k d{\varLambda }_{k-1} \nonumber \\&\quad = \Vert {}_{x_k}^{}{\mathcal {D}}_{b_k}^{\beta _k/2}\, (u)\Vert _{L^2({\varLambda }_k)}^2+\Vert {}_{a_k}^{}{\mathcal {D}}_{x_k}^{\beta _k/2}\, (u)\Vert _{L^2({\varLambda }_k)}^2+\Vert u \Vert _{L^2({\varLambda }_k)}^2, \end{aligned}$$

and

$$\begin{aligned} \Vert u \Vert _{L^2((a_k,b_k); \mathcal {X}_{k-1})}^2&= \int _{a_k}^{b_k} \left( \sum _{i=1}^{k-1} \left( \int _{{\varLambda }_{k-1}}^{} \vert {}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2} u \vert ^2 d{\varLambda }_{k-1} + \int _{{\varLambda }_{k-1}}^{} \vert {}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2} u \vert ^2 d{\varLambda }_{k-1} \right) \right. \\&\quad \left. +\, \int _{{\varLambda }_{k-1}}^{} \vert u \vert ^2 d{\varLambda }_{k-1}\phantom {\left( \sum _{i=1}^{k-1} \left( \int _{{\varLambda }_{k-1}}^{} \vert {}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2} u \vert ^2 d{\varLambda }_{k-1} + \int _{{\varLambda }_{k-1}}^{} \vert {}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2} u \vert ^2 d{\varLambda }_{k-1} \right) \right. } \right) dx_k \\&= \sum _{i=1}^{k-1} \left( \int _{{\varLambda }_k}^{} \vert {}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2} u \vert ^2 d{\varLambda }_k + \int _{{\varLambda }_k}^{} \vert {}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2} u \vert ^2 d{\varLambda }_k \right) + \int _{{\varLambda }_k}^{} \vert u \vert ^2 d{\varLambda }_k\\&= \sum _{i=1}^{k-1} \left( \Vert {}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2}\, u\Vert _{L^2({\varLambda }_k)}^2+\Vert {}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2}\, u\Vert _{L^2({\varLambda }_k)}^2 \right) +\Vert u \Vert _{L^2({\varLambda }_k)}^2, \end{aligned}$$

we can show that

$$\begin{aligned} \Vert \cdot \Vert _{\mathcal {X}_{k}} \equiv \left\{ \sum _{i=1}^{k} \left( \Vert {}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2}\, (\cdot )\Vert _{L^2({\varLambda }_{k})}^2+\Vert {}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2}\, (\cdot )\Vert _{L^2({\varLambda }_{k})}^2 \right) + \Vert \cdot \Vert _{L^2({\varLambda }_{k})}^2 \right\} ^{\frac{1}{2}}. \end{aligned}$$
(86)

Proof of Lemma 7

According to [57], we have \({}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i} u={}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2} ({}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2} u)\) and \({}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2} u={}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2}({}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2} u)\). Let \(\bar{u}={}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2} u\). Then,

$$\begin{aligned}&\left( {}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i} u,v\right) _{{\varLambda }_d}= \left( {}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2} \bar{u},v\right) _{{\varLambda }_d}=\int _{{\varLambda }_d}^{} \frac{1}{{\varGamma }(1-\beta _i/2)} \left[ \frac{d}{dx_i}\, \int _{a_i}^{x_i}\frac{\bar{u}(s)\,ds}{(x_i-s)^\beta _i/2} \right] v\,d{\varLambda }_d \nonumber \\&\quad = \left\{ \frac{v}{{\varGamma }(1-\beta _i/2)\int _{a_i}^{x_i} \frac{\bar{u}ds}{(x_i-s)^{\beta _i/2}}} \right\} ^{b_i}_{x_i=a_i} - \int _{{\varLambda }_d}^{} \frac{1}{{\varGamma }(1-\beta _i/2)}\int _{a_i}^{x_i}\frac{\bar{u}(s)\,ds}{(x_i-s)^{\beta _i/2}} \frac{dv}{dx_i}\, d{\varLambda }_d.\nonumber \\ \end{aligned}$$
(87)

Based on the homogeneous boundary conditions, \(\left\{ \frac{v}{{\varGamma }(1-\beta _i/2)\int _{a_i}^{x_i} \frac{\bar{u}ds}{(x_i-s)^{\beta _i/2}}} \right\} ^{b_i}_{x_i=a_i}=0.\) Therefore,

$$\begin{aligned} \left( {}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i} u,v\right) _{{\varLambda }_d}= & {} -\int _{{\varLambda }_i}^{}\frac{1}{{\varGamma }(1-\beta _i/2)}\int _{a_i}^{x_i}\frac{\bar{u}(s)\,ds}{(x_i-s)^{\beta _i/2}} \frac{dv}{dx_i}\, d{\varLambda }_i. \end{aligned}$$
(88)

Moreover, we find that

$$\begin{aligned}&\frac{d}{ds}\, \int _{a_i}^{b_i}\frac{u}{(x_i-s)^{\beta _i/2}}dx_i\nonumber \\&\quad = \frac{d}{ds} \left\{ \left\{ \frac{v\, (x_i-s)^{1-\beta _i/2}}{1-\beta _i/2}\right\} _{x_i=s_i}^{b_i}-\frac{1}{1-\beta _i/2}\int _{s}^{b_i}\frac{dv}{dx_i}(x_i-s)^{1-\beta _i/2}dx_i \right\} \nonumber \\&\quad = -\frac{1}{1-\beta _i/2} \int _{s}^{b_i} \frac{dv}{dx_i}(x_i-s)^{1-\beta _i/2}\, dx_i = \int _{s}^{b_i} \frac{\frac{dv}{dx_i}}{(x_i-s)^{\beta _i/2}}\, dx_i. \end{aligned}$$
(89)

Therefore, we get

$$\begin{aligned}&\left( {}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2} \bar{u},v\right) _{{\varLambda }_d}\nonumber \\&\quad =-\int _{{\varLambda }_d}^{} \frac{1}{{\varGamma }(1-\nu )_i}\, \bar{u}(s) \left( -\frac{d}{ds} \int _{s}^{b_i}\frac{v}{(x_i-s)^{\beta _i/2}}dx_i\right) \,ds=\left( \bar{u},{}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2}v\right) _{{\varLambda }_d}. \quad \end{aligned}$$

Proof of Lemma 8

We know that

$$\begin{aligned} \left| \left( {}_{0}^{}{\mathcal {D}}_{t}^{\alpha /2} u, {}_{t}^{}{\mathcal {D}}_{T}^{\alpha /2} v \right) _{{\varOmega }} \right| = \left( \int _{{\varLambda }_d}^{} \int _{0}^{T} \left| {}_{0}^{}{\mathcal {D}}_{t}^{\alpha /2} u \, {}_{t}^{}{\mathcal {D}}_{T}^{\alpha /2} v \right| ^2\, dt d{\varLambda }_d \right) ^{\frac{1}{2}}. \end{aligned}$$

Therefore, by Hölder inequality

$$\begin{aligned}&\left| \left( {}_{0}^{}{\mathcal {D}}_{t}^{\alpha /2} u, {}_{t}^{}{\mathcal {D}}_{T}^{\alpha /2} v \right) _{{\varOmega }} \right| \\&\quad \le \left( \int _{{\varLambda }_d}^{} \int _{0}^{T} \vert {}_{0}^{}{\mathcal {D}}_{t}^{\alpha /2} u \vert ^2\, dt d{\varLambda }_d \right) ^{\frac{1}{2}} \, \left( \int _{{\varLambda }_d}^{} \int _{0}^{T} \vert {}_{t}^{}{\mathcal {D}}_{T}^{\alpha /2} v \vert ^2\, dt d{\varLambda }_d \right) ^{\frac{1}{2}} \\&\quad \le \left( \int _{{\varLambda }_d}^{} \int _{0}^{T} \vert {}_{0}^{}{\mathcal {D}}_{t}^{\alpha /2} u \vert ^2\, dt d{\varLambda }_d + \int _{{\varLambda }_d}^{} \int _{0}^{T} \vert u \vert ^2\, dt d{\varLambda }_d \right) ^{\frac{1}{2}} \\&\qquad \times \left( \int _{{\varLambda }_d}^{} \int _{0}^{T} \vert {}_{t}^{}{\mathcal {D}}_{T}^{\alpha /2} v \vert ^2\, dt d{\varLambda }_d + \int _{{\varLambda }_d}^{} \int _{0}^{T} \vert v \vert ^2\, dt d{\varLambda }_d \right) ^{\frac{1}{2}} \\&\quad = \Vert {}_{0}^{}{\mathcal {D}}_{t}^{\alpha /2} u \Vert _{L^2({\varOmega })} \, \Vert {}_{t}^{}{\mathcal {D}}_{T}^{\alpha /2} v \Vert _{L^2({\varOmega })} = \Vert u \Vert _{{}_{}^{l}H^{\alpha /2}(I; L^2({\varLambda }_d))} \, \Vert v \Vert _{{}_{}^{r}H^{\alpha /2}(I; L^2({\varLambda }_d))}. \end{aligned}$$

Moreover, by equivalence of \(\vert \cdot \vert _{H^{s}(I)} \equiv \vert \cdot \vert ^{*}_{H^{s}(I)} = \vert \cdot \vert ^{1/2}_{{^l}H^{s}(I)} \vert \cdot \vert ^{1/2}_{{^r}H^{s}(I)} \) we have

$$\begin{aligned} \left| ({}_{0}^{}{\mathcal {D}}_{t}^{\alpha /2} u, {}_{t}^{}{\mathcal {D}}_{T}^{\alpha /2} v)_{I}\right|= & {} \int _{0}^{T} \left| {}_{0}^{}{\mathcal {D}}_{t}^{\alpha /2} u \, {}_{t}^{}{\mathcal {D}}_{T}^{\alpha /2} v \right| ^2\, dt \nonumber \\\ge & {} \int _{0}^{T} \left| {}_{0}^{}{\mathcal {D}}_{t}^{\alpha /2} u \right| ^2 dt \, \int _{0}^{T} \left| {}_{t}^{}{\mathcal {D}}_{T}^{\alpha /2} v \right| ^2\, dt \ge \tilde{\beta }_1 \Vert u \Vert _{{^l}H^{s}(I)} \Vert v \Vert _{{^r}H^{s}(I)},\nonumber \\ \end{aligned}$$
(90)

where \(0<\tilde{\beta }_1\le 1\). Therefore,

$$\begin{aligned} \left| ({}_{0}^{}{\mathcal {D}}_{t}^{\alpha /2} u, {}_{t}^{}{\mathcal {D}}_{T}^{\alpha /2} v)_{{\varOmega }} \right| ^2= & {} \int _{{\varLambda }_d}^{} \int _{0}^{T} \left| {}_{0}^{}{\mathcal {D}}_{t}^{\alpha /2} u \, {}_{t}^{}{\mathcal {D}}_{T}^{\alpha /2} v \right| ^2\, dt \, d{\varLambda }_d \nonumber \\\ge & {} \int _{{\varLambda }_d}^{} \left( \int _{0}^{T} \vert {}_{0}^{}{\mathcal {D}}_{t}^{\alpha /2} u \vert ^2 dt \, \int _{0}^{T} \vert {}_{t}^{}{\mathcal {D}}_{T}^{\alpha /2} v \vert ^2\, dt\right) \, d{\varLambda }_d \nonumber \\\ge & {} \bar{\beta } \int _{{\varLambda }_d}^{} \int _{0}^{T} \vert {}_{0}^{}{\mathcal {D}}_{t}^{\alpha /2} u \vert ^2 dt d{\varLambda }_d\, \int _{{\varLambda }_d}^{} \int _{0}^{T} \vert {}_{t}^{}{\mathcal {D}}_{T}^{\alpha /2} v \vert ^2\, dt \, {\varLambda }_d \nonumber \\\ge & {} \bar{\beta } \tilde{\beta }_2 \Vert u \Vert _{{^l}H^{s}(I)} \Vert v \Vert _{{^r}H^{s}(I)}, \end{aligned}$$
(91)

where \(0<\tilde{\beta }_2\le 1\) and \(0<\bar{\beta }\).

Proof of the Stability Theorem 5

Part A: \(d=1\). It is evident that u and v are in Hilbert spaces (see [49, 64]). For \(0< \tilde{\beta } \le 1\), we have

$$\begin{aligned} \vert a(u,v)\vert= & {} \left| \left( {}_{0}^{}{\mathcal {D}}_{t}^{\alpha /2}\, (u),{}_{t}^{}{\mathcal {D}}_{T}^{\alpha /2}\, (v)\right) _{{\varOmega }} + \left( {}_{a_1}^{}{\mathcal {D}}_{x_1}^{\beta _1/2}\, (u),{}_{x_1}^{}{\mathcal {D}}_{b_1}^{\beta _1/2}\, (v)\right) _{{\varOmega }} \right. \\&\left. \quad + \left( {}_{a_1}^{}{\mathcal {D}}_{x_1}^{\beta _1/2}\, (u),{}_{x_1}^{}{\mathcal {D}}_{b_1}^{\beta _1/2}\, (v)\right) _{{\varOmega }}+(u,v)_{{\varOmega }}\right| \\\ge & {} \tilde{\beta } \left( \left| \left( {}_{0}^{}{\mathcal {D}}_{t}^{\alpha /2}\, (u),{}_{t}^{}{\mathcal {D}}_{T}^{\alpha /2}\, (v)\right) _{{\varOmega }}\right| + \left| \left( {}_{a_1}^{}{\mathcal {D}}_{x_1}^{\beta _1/2}\, (u),{}_{x_1}^{}{\mathcal {D}}_{b_1}^{\beta _1/2}\, (v)\right) _{{\varOmega }}\right| \right. \\&\left. \quad +\left| \left( {}_{a_1}^{}{\mathcal {D}}_{x_1}^{\beta _1/2}\, (u),{}_{x_1}^{}{\mathcal {D}}_{b_1}^{\beta _1/2}\, (v)\right) _{{\varOmega }}\right| +\vert (u,v)_{{\varOmega }}\vert \right) , \end{aligned}$$

since \({\sup }_{{u \in U}} \vert a(u , v)\vert >0\). Next, by equivalence of spaces and their associated norms, (63), and (64), we obtain

$$\begin{aligned} \left| \left( {}_{0}^{}{\mathcal {D}}_{t}^{\alpha /2}\, (u),{}_{t}^{}{\mathcal {D}}_{T}^{\alpha /2}\, (v)\right) _{{\varOmega }}\right|\ge & {} C_1 \Vert {}_{0}^{}{\mathcal {D}}_{t}^{\alpha /2} u\Vert _{L^2({\varOmega })} \, \Vert {}_{t}^{}{\mathcal {D}}_{T}^{\alpha /2} v\Vert _{L^2({\varOmega })}, \\ \left| \left( {}_{a_1}^{}{\mathcal {D}}_{x_1}^{\beta _1/2}\, (u),{}_{x_1}^{}{\mathcal {D}}_{b_1}^{\beta _1/2}\, (v)\right) _{{\varOmega }} \right|\ge & {} C_2 \Vert {}_{a_1}^{}{\mathcal {D}}_{x_1}^{\beta _1/2} u \Vert _{L^2({\varOmega })}\, \Vert {}_{x_1}^{}{\mathcal {D}}_{b_1}^{\beta _1/2} v \Vert _{L^2({\varOmega })}, \quad \end{aligned}$$

and

$$\begin{aligned} \left| \left( {}_{x_1}^{}{\mathcal {D}}_{b_1}^{\beta _1/2}\, (u),{}_{a_1}^{}{\mathcal {D}}_{x_1}^{\beta _1/2}\, (v)\right) _{{\varOmega }}\right| \ge C_3 \Vert {}_{x_1}^{}{\mathcal {D}}_{b_1}^{\beta _1/2} u \Vert _{L^2({\varOmega })} \, \Vert {}_{a_1}^{}{\mathcal {D}}_{x_1}^{\beta _1/2} v \Vert _{L^2({\varOmega })}, \end{aligned}$$
(92)

where \(C_1\), \(C_2\), and \(C_3\) are positive constants. Therefore,

$$\begin{aligned} \vert a(u,v)\vert\ge & {} \tilde{C} \tilde{\beta } \left\{ \Vert {}_{0}^{}{\mathcal {D}}_{t}^{\alpha /2} u\Vert _{L^2({\varOmega })} \, \Vert {}_{t}^{}{\mathcal {D}}_{T}^{\alpha /2} v\Vert _{L^2({\varOmega })} + \Vert {}_{a_1}^{}{\mathcal {D}}_{x_1}^{\beta _1/2} u \Vert _{L^2({\varOmega })}\, \Vert {}_{x_1}^{}{\mathcal {D}}_{b_1}^{\beta _1/2} v \Vert _{L^2({\varOmega })} \right. \nonumber \\&\quad \left. + \Vert {}_{a_1}^{}{\mathcal {D}}_{x_1}^{\beta _1/2} u \Vert _{L^2({\varOmega })} \, \Vert {}_{x_1}^{}{\mathcal {D}}_{b_1}^{\beta _1/2} v \Vert _{L^2({\varOmega })} \right\} , \end{aligned}$$
(93)

where \(\tilde{C}\) is \(min\{C_1, \, C_2, \, C_3 \}\). Also, the norm \( \Vert u \Vert _{U} \, \Vert v \Vert _{V}\) is equivalent to the right hand side of inequality (93). Therefore, \(\vert a(u,v)\vert \ge C \, \Vert u \Vert _{U}\Vert v \Vert _{V}\).

Part B: \(d > 1\). Similarly, we have

$$\begin{aligned} \vert a(u,v)\vert&\ge \beta \left( \left| \left( {}_{0}^{}{\mathcal {D}}_{t}^{\alpha /2} (u),{}_{t}^{}{\mathcal {D}}_{T}^{\alpha /2} (v)\right) _{{\varOmega }}\right| \right. \nonumber \\&\left. \quad + \sum _{i=1}^{d} \left( \left| \left( {}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2} (u),{}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2} (v)\right) _{{\varOmega }}\right| +\left| \left( {}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2} (u),{}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2} (v)\right) _{{\varOmega }}\right| \right) \right) , \end{aligned}$$
(94)

where \(0< \beta \le 1\). Recalling that as the direct consequences of (63), we obtain

$$\begin{aligned} \left| \left( {}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2}\, (u),{}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2}\, (v)\right) _{{\varOmega }} \right|&\equiv \Vert {}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2}\, (u) \Vert _{L^2({\varOmega })} \, \Vert {}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2}\, (v)\Vert _{L^2({\varOmega })}, \\ \left| \left( {}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2}\, (u),{}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2}\, (v)\right) _{{\varOmega }} \right|&\equiv \Vert {}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2}\, (u) \Vert _{L^2({\varOmega })} \, \Vert {}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2}\, (v)\Vert _{L^2({\varOmega })}. \end{aligned}$$

Thus,

$$\begin{aligned}&\sum _{i=1}^{d} \left( \left| \left( {}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2}\, (u),{}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2}\, (v)\right) _{{\varOmega }} \right| +\left| \left( {}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2}\, (u),{}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2}\, (v)\right) _{{\varOmega }} \right| \right) , \nonumber \\&\quad \ge \tilde{C} \sum _{i=1}^{d} \left( \Vert {}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2}\, (u) \Vert _{L^2({\varOmega })} \, \Vert {}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2}\, (v)\Vert _{L^2({\varOmega })} + \Vert {}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2}\, (u) \Vert _{L^2({\varOmega })} \, \Vert {}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2}\, (v)\Vert _{L^2({\varOmega })}\right) , \nonumber \\&\quad \ge \tilde{C}_1 \, \tilde{\beta } \sum _{i=1}^{d} \left( \Vert {}_{a_i}^{}{\mathcal {D}}_{x_i}^{\beta _i/2}\, (u) \Vert _{L^2({\varOmega })} + \Vert {}_{x_i}^{}{\mathcal {D}}_{b_i}^{\beta _i/2}\, (u) \Vert _{L^2({\varOmega })} \right) \nonumber \\&\qquad \times \sum _{j=1}^{d} \left( \Vert {}_{x_j}^{}{\mathcal {D}}_{b_j}^{\nu _j}\, (v)\Vert _{L^2({\varOmega })}, + \Vert {}_{a_j}^{}{\mathcal {D}}_{x_j}^{\nu _j}\, (v)\Vert _{L^2({\varOmega })}\right) , \end{aligned}$$
(95)

for \(u,\, v \in L^2(I; \mathcal {X}_d)\), where \(0<\tilde{C}\) and \(0<\tilde{\beta }\le 1\). Furthermore, Lemma 8 yields

$$\begin{aligned} \left| \left( {}_{0}^{}{\mathcal {D}}_{t}^{\alpha /2}(u),{}_{t}^{}{\mathcal {D}}_{T}^{\alpha /2}(v)\right) _{{\varOmega }}\right| \equiv \Vert u \Vert _{{}_{}^{r}H^{\alpha /2}(I;L^2({\varLambda }_d))} \, \, \Vert v \Vert _{{}_{}^{l}H^{\alpha /2}(I;L^2({\varLambda }_d))}. \end{aligned}$$
(96)

Therefore, from (95) and (96) we have

$$\begin{aligned} \vert a(u,v)\vert \ge \beta \left( \Vert u \Vert _{{}_{}^{r}H^{\alpha /2}(I; L^2({\varLambda }_d))} \, \, \Vert v \Vert _{{}_{}^{l}H^{\alpha /2}(I;L^2({\varLambda }_d))} + \Vert u \Vert _{L^2(I; \mathcal {X}_d)} \, \Vert v \Vert _{L^2(I; \mathcal {X}_d)}\right) , \end{aligned}$$
(97)

where

$$\begin{aligned}&\Vert u \Vert _{{}_{}^{r}H^{\alpha /2}(I; L^2({\varLambda }_d))} \, \, \Vert v \Vert _{{}_{}^{l}H^{\alpha /2}(I;L^2({\varLambda }_d))} + \Vert u \Vert _{L^2(I; \mathcal {X}_d)} \, \Vert v \Vert _{L^2(I; \mathcal {X}_d)} \nonumber \\&\quad \ge \tilde{C}_2 \left( \Vert u \Vert _{{}_{}^{r}H^{\alpha /2}(I; L^2({\varLambda }_d))} + \Vert u \Vert _{L^2(I; \mathcal {X}_d)} \right) \left( \Vert v \Vert _{{}_{}^{l}H^{\alpha /2}(I;L^2({\varLambda }_d))}+\Vert v \Vert _{L^2(I; \mathcal {X}_d)}\right) \nonumber \\ \end{aligned}$$
(98)

for \(u \in U \), \(v \in U\) and \(0<\tilde{C}_2\le 1\). By considering (97) and (98), we get

$$\begin{aligned} \vert a(u,v)\vert \ge C \, \Vert u \Vert _{U}\Vert v \Vert _{V}. \end{aligned}$$
(99)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharazmi, E., Zayernouri, M. Fractional Sensitivity Equation Method: Application to Fractional Model Construction. J Sci Comput 80, 110–140 (2019). https://doi.org/10.1007/s10915-019-00935-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00935-0

Keywords

Navigation