Skip to main content
Log in

On Spectral Approximations with Nonstandard Weight Functions and Their Implementations to Generalized Chaos Expansions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this manuscript, we analyze the expansions of functions in orthogonal polynomials associated with a general weight function in a multidimensional setting. Such orthogonal polynomials can be obtained, e.g, by Gram–Schmidt orthogonalization. However, in most cases, they are not eigenfunctions of some singular Sturm–Liouville problem, as is the case for known polynomials, such as the Jacobi polynomials. Therefore, the standard convergence theorems do not apply. Furthermore, since in general multidimensional cases the weight functions are not a tensor product of one-dimensional functions, the orthogonal polynomials are not a product of one-dimensional orthogonal polynomials, as well. This work provides a way of estimating the convergence rate using a comparison lemma. We also present a spectrally convergent, multidimensional, integration method. Numerical examples demonstrate the efficacy of the proposed method. We also show that the use of non-standard weight functions can allow for efficient integration of singular functions. We demonstrate the use of this method to uncertainty quantification problem using Generalized Polynomial Chaos Expansions in the case of dependent random variables, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in sobolev spaces. Math. Comput. 38(157), 67–86 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, X., Park, E.-J., Xiu, D.: A flexible numerical approach for quantification of epistemic uncertainty. J. Comput. Phys. 240, 211–224 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Conte, S.D., De Boor, C.W.: Elementary Numerical Analysis: an Algorithmic Approach. McGraw-Hill Higher Education, New York City, NY (1980)

    MATH  Google Scholar 

  4. DeVore, R.A., Lorentz, G.G.: Constructive Approximation, vol. 303. Springer, Berlin, Germany (1993)

    Book  MATH  Google Scholar 

  5. Funaro, D.: Polynomial Approximation of Differential Equations, vol. 8. Springer, Berlin, Germany (2008)

    MATH  Google Scholar 

  6. Gottlieb, D., Xiu, D.: Galerkin method for wave equations with uncertain coefficients. Commun. Comput. Phys 3(2), 505–518 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems, vol. 21. Cambridge University Press, Cambridge, UK (2007)

    Book  MATH  Google Scholar 

  8. Jakeman, J., Eldred, M., Xiu, D.: Numerical approach for quantification of epistemic uncertainty. J. Comput. Phys. 229(12), 4648–4663 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, J., Qi, X., Xiu, D.: On upper and lower bounds for quantity of interest in problems subject to epistemic uncertainty. SIAM J. Sci. Comput. 36(2), A364–A376 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lin, G., Su, C.-H., Karniadakis, G.E.: Random roughness enhances lift in supersonic flow. Phys. Rev. Lett. 99(10), 104501 (2007)

    Article  Google Scholar 

  11. Mujumdar, A.S.: Handbook of Industrial Drying. CRC Press, Boca Raton, Florida (2014)

    Book  Google Scholar 

  12. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  13. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, vol. 37. Springer, Berlin, Germany (2010)

    MATH  Google Scholar 

  14. Rosenblatt, M.: Remarks on a multivariate transformation. Ann. Math. Stat. 23(3), 470–472 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: algorithms, Analysis and Applications, vol. 41. Springer, Berlin, Germany (2011)

    Book  MATH  Google Scholar 

  16. Stein, E.M.: Harmonic Analysis (PMS-43), Volume 43: real-variable Methods, Orthogonality, and Oscillatory Integrals. (PMS-43), vol. 3. Princeton University Press, Princeton, NJ (2016)

    Google Scholar 

  17. Szabó, B.A., Yosibash, Z.: Numerical analysis of singularities in two dimensions. Part 2: computation of generalized flux/stress intensity factors. Int. J. Numer. Methods Eng. 39(3), 409–434 (1996)

    Article  MATH  Google Scholar 

  18. Szeg, G.: Orthogonal Polynomials, vol. 23. American Mathematical Soc., Providence, Rhode Island (1939)

    Google Scholar 

  19. Xiu, D.: Fast numerical methods for stochastic computations: a review. Commun. Comput. Phys. 5(2–4), 242–272 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Xiu, D.: Numerical Methods for Stochastic Computations: a Spectral Method Approach. Princeton University Press, Princeton, NJ (2010)

    Book  MATH  Google Scholar 

  21. Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xiu, D., Karniadakis, G.E.: A new stochastic approach to transient heat conduction modeling with uncertainty. Int. J. Heat Mass Transf. 46(24), 4681–4693 (2003)

    Article  MATH  Google Scholar 

  24. Xiu, D., Tartakovsky, D.M.: Numerical methods for differential equations in random domains. SIAM J. Sci. Comput. 28(3), 1167–1185 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yuan, X.: Lecture notes on orthogonal polynomials of several variables. Adv. Theory Spec. Funct. Orthogonal Polynomials Nova Sci. Publ. 135, 188 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ditkowski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix: Local Errors for the L-Shaped Domain and Condition Numbers in a Triangular Domain.

A Appendix: Local Errors for the L-Shaped Domain and Condition Numbers in a Triangular Domain.

Table 1 The error in each subdomain, \(\Omega _j\) for different degree of non-standard polynomials expansions
Table 2 The error in each subdomain, \(\Omega _j\) for different degree of Legendre-type polynomials expansions
Table 3 Condition numbers in a triangular domain. The condition number grows less than linear with M (the slope of the linear least squares regression of \(\log (\text {the condition number}\,)\) versus \(\log (M)\) is 0.7086)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ditkowski, A., Katz, R. On Spectral Approximations with Nonstandard Weight Functions and Their Implementations to Generalized Chaos Expansions. J Sci Comput 79, 1981–2005 (2019). https://doi.org/10.1007/s10915-019-00922-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00922-5

Keywords

Navigation