Skip to main content
Log in

A Jacobi Spectral Method for Solving Multidimensional Linear Volterra Integral Equation of the Second Kind

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The subject of the present paper is to apply the Jacobi spectral collocation method for multidimensional linear Volterra integral equation with a weakly singular kernel. Here, we assume that the solution is sufficiently smooth. An error analysis has been provided which justifies that the approximate solution converges exponentially to the exact solution. Finally, two numerical examples are given to clarify the efficiency and accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brunner, H.: Implicit Runge-Kutta methods of optimal order for Volterra integro-differential equations. Math. Comput. 42, 95–109 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brunner, H.: Polynomial spline collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. Anal. 6, 221–239 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations, vol. 15. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  4. Brunner, H., Pedas, A., Vainikko, G.: Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels. SIAM J. Numer. Anal. 39, 957–982 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brunner, H., Schötzau, D.: hp-Discontinuous Galerkin time-stepping for Volterra integrodifferential equations. SIAM J. Numer. Anal. 44, 224–245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brunner, H., Tang, T.: Polynomial spline collocation methods for the nonlinear Basset equation. Comput. Math. Appl. 18, 449–457 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Canuto, C., Hussaini, M.Y., Quarteroni, A., et al.: Spectral Methods Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  8. Chen, Y., Li, X., Tang, T.: A note on Jacobi spectral-collocation methods for weakly singular Volterra integral equations with smooth solutions. J. Comput. Math. 31, 47–56 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Y., Tang, T.: Spectral methods for weakly singular Volterra integral equations with smooth solutions. J. Comput. Appl. Math. 233, 938–950 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Y., Tang, T.: Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel. Math. Comput. 79, 147–167 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fedotov, A.I.: Lebesgue constant estimation in multidimensional Sobolev space. J. Math. 14, 25–32 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Goldfine, A.: Taylor series methods for the solution of Volterra integral and integro-differential equations. Math. Comput. 31, 691–707 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Headley, V.B.: A multidimensional nonlinear Gronwall inequality. J. Math. Anal. Appl. 47, 250–255 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kufner, A., Persson, L.: Weighted Inequalities of Hardy Type. World Scientific, New York (2003)

    Book  MATH  Google Scholar 

  15. Nevai, P.: Mean convergence of Lagrange interpolation. Trans. Am. Math. Soc. 282, 669–698 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ragozin, D.L.: Polynomial approximation on compact manifolds and homogeneous spaces. Trans. Am. Math. Soc. 150, 41–53 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ragozin, D.L.: Constructive polynomial approximation on spheres and projective spaces. Trans. Am. Math. Soc. 162, 157–170 (1971)

    MathSciNet  MATH  Google Scholar 

  18. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)

    MATH  Google Scholar 

  19. Tang, T., Xu, X., Chen, J.: On spectral methods for Volterra integral equations and the convergence analysis. J. Comput. Math. 26, 825–837 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Wei, Y.X., Chen, Y.: Legendre spectral collocation methods for pantograph Volterra delay-integro-differential equation. J. Sci. Comput. 53, 672–688 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wei, Y.X., Chen, Y.: Legendre spectral collocation method for neutral and high-order Volterra integro-differential equation. Appl. Numer. Math. 81, 15–29 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, Y., Chen, Y., Huang, Y., Yang, W.: Convergence analysis of Legendre-collocation methods for nonlinear Volterra type integro equations. Adv. Appl. Math. Mech. 7, 74–88 (2015)

    Article  MathSciNet  Google Scholar 

  23. Yuan, W., Tang, T.: The numerical analysis of implicit Runge—Kutta methods for a certain nonlinear integro-differential equation. Math. Comput. 54, 155–168 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (11671157) and Shandong Province Natural Science Foundation of China (ZR2017MA005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Chen, Y. A Jacobi Spectral Method for Solving Multidimensional Linear Volterra Integral Equation of the Second Kind. J Sci Comput 79, 1801–1813 (2019). https://doi.org/10.1007/s10915-019-00912-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00912-7

Keywords

Mathematics Subject Classification

Navigation