Skip to main content
Log in

Corner Cases, Singularities, and Dynamic Factoring

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In Eikonal equations, rarefaction is a common phenomenon known to degrade the rate of convergence of numerical methods. The “factoring” approach alleviates this difficulty by deriving a PDE for a new (locally smooth) variable while capturing the rarefaction-related singularity in a known (non-smooth) “factor”. Previously this technique was successfully used to address rarefaction fans arising at point sources. In this paper we show how similar ideas can be used to factor the 2D rarefactions arising due to nonsmoothness of domain boundaries or discontinuities in PDE coefficients. Locations and orientations of such rarefaction fans are not known in advance and we construct a “just-in-time factoring” method that identifies them dynamically. The resulting algorithm is a generalization of the Fast Marching Method originally introduced for the regular (unfactored) Eikonal equations. We show that our approach restores the first-order convergence and illustrate it using a range of maze navigation examples with non-permeable and “slowly permeable” obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. This formula for \(u(\mathbf{x })\) is derived on the unbounded domain \(\varOmega _{\infty } = \{ \mathbf{x }\in R^2 \mid F(\mathbf{x }) > 0 \}\) but remains valid on \(\varOmega = [0,1]\times [0,1]\) as long as \(\varOmega _{\infty }\)-optimal trajectories from every \(\mathbf{x }\in \varOmega \) to \(\mathbf{x }_0\) stay entirely inside \(\varOmega ,\) which is the case for all examples considered in this section. The linearity of \(F(\mathbf{x })\) can be used to show that all optimal paths are circular arcs, whose radii are monotone decreasing in \(|\mathbf{v }|\). (When \(\mathbf{v }=0,\) these radii are infinite; i.e., all optimal paths are straight lines and \(u(\mathbf{x }) = s_0 |\mathbf{x }-\mathbf{x }_0|.\))

  2. Throughout the paper we refer to this approach as “additive factoring” to stay consistent with the terminology used in prior literature.

References

  1. Alton, K., Mitchell, I.M.: An ordered upwind method with precomputed stencil and monotone node acceptance for solving static convex Hamilton–Jacobi equations. J. Sci. Comput. 51(2), 313–348 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bardi, M., Italo, C.D.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  3. Benamou, J.D., Luo, S., Zhao, H.: A compact upwind second order scheme for the Eikonal equation. J. Comput. Math., pp. 489–516 (2010)

  4. Bertsekas, D.P.: Network Optimization: Continuous and Discrete Models. Athena Scientific, Belmont (1998)

    MATH  Google Scholar 

  5. Chacon, A., Vladimirsky, A.: Fast two-scale methods for Eikonal equations. SIAM J. Sci. Comput. 34(2), A547–A578 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chacon, A., Vladimirsky, A.: A parallel two-scale method for eikonal equations. SIAM J. Sci. Comput. 37(1), A156–A180 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dahiya, D., Cameron, M.: Ordered line integral methods for computing the quasi-potential. J. Sci. Comput. (2017). In revision; arXiv:1706.07509

  9. Dijkstra, E.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fomel, S., Luo, S., Zhao, H.: Fast sweeping method for the factored Eikonal equation. J. Comput. Phys. 228(17), 6440–6455 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kao, C.Y., Osher, S., Qian, J.: Lax–Friedrichs sweeping scheme for static Hamilton–Jacobi equations. J. Comput. Phys. 196(1), 367–391 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kimmel, R., Sethian, J.A.: Fast marching methods on triangulated domains. Proc. Natl. Acad. Sci. 95, 8341–8435 (1998)

    Article  Google Scholar 

  13. Kumar, A., Vladimirsky, A.: An efficient method for multiobjective optimal control and optimal control subject to integral constraints. J. Comput. Math. 28(4), 517–551 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Luo, S.: Numerical Methods for Static Hamilton–Jacobi Equations. Ph.D. thesis, University of California at Irvine (2009)

  15. Luo, S., Qian, J.: Factored singularities and high-order Lax–Friedrichs sweeping schemes for point-source traveltimes and amplitudes. J. Comput. Phys. 230(12), 4742–4755 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Luo, S., Qian, J.: Fast sweeping methods for factored anisotropic eikonal equations: multiplicative and additive factors. J. Sci. Comput. 52(2), 360–382 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Luo, S., Qian, J., Burridge, R.: High-order factorization based high-order hybrid fast sweeping methods for point-source Eikonal equations. SIAM J. Numer. Anal. 52(1), 23–44 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mirebeau, J.M.: Efficient fast marching with Finsler metrics. Numer. Math. 126(3), 515–557 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mitchell, I.M., Sastry, S.: Continuous path planning with multiple constraints. In: 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), vol. 5, pp. 5502–5507 (2003)

  20. Noble, M., Gesret, A., Belayouni, N.: Accurate 3-d finite difference computation of traveltimes in strongly heterogeneous media. Geophys. J. Int. 199(3), 1572–1585 (2014)

    Article  Google Scholar 

  21. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93(4), 1591–1595 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sethian, J.A., Adalsteinsson, D.: An overview of level set methods for etching, deposition, and lithography development. IEEE Trans. Semicond. Manuf. 10(1), 167–184 (1997)

    Article  Google Scholar 

  24. Sethian, J.A., Vladimirsky, A.: Fast methods for the Eikonal and related Hamilton–Jacobi equations on unstructured meshes. Proc. Natl. Acad. Sci. 97(11), 5699–5703 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton–Jacobi equations. Proc. Natl. Acad. Sci. 98(20), 11069–11074 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton–Jacobi equations: theory and algorithms. SIAM J. Numer. Anal. 41(1), 325–363 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Treister, E., Haber, E.: A fast marching algorithm for the factored Eikonal equation. J. Comput. Phys. 324, 210–225 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tsai, Y.H.R., Cheng, L.T., Osher, S., Zhao, H.K.: Fast sweeping algorithms for a class of Hamilton–Jacobi equations. SIAM J. Numer. Anal. 41(2), 673–694 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control 40(9), 1528–1538 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, Y.T., Chen, S., Li, F., Zhao, H., Shu, C.W.: Uniformly accurate discontinuous galerkin fast sweeping methods for Eikonal equations. SIAM J. Sci. Comput. 33(4), 1873–1896 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, Y.T., Zhao, H.K., Qian, J.: High order fast sweeping methods for static Hamilton–Jacobi equations. J. Sci. Comput. 29(1), 25–56 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput. 74(250), 603–627 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to anonymous reviewers for their suggestions on improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Vladimirsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author’s work is supported in part by the National Science Foundation Grant DMS-1738010 and the Simons Foundation Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, D., Vladimirsky, A. Corner Cases, Singularities, and Dynamic Factoring. J Sci Comput 79, 1456–1476 (2019). https://doi.org/10.1007/s10915-019-00905-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00905-6

Keywords

Mathematics Subject Classification

Navigation