Skip to main content
Log in

Conservative Multi-dimensional Semi-Lagrangian Finite Difference Scheme: Stability and Applications to the Kinetic and Fluid Simulations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a mass conservative semi-Lagrangian finite difference scheme for multi-dimensional problems without dimensional splitting. The semi-Lagrangian scheme, based on tracing characteristics backward in time from grid points, does not necessarily conserve the total mass. To ensure mass conservation, we propose a conservative correction procedure based on a flux difference form. Such procedure guarantees local mass conservation, while introducing time step constraints for stability. We theoretically investigate such stability constraints from an ODE point of view by assuming exact evaluation of spatial differential operators and from the Fourier analysis for linear PDEs. The scheme is tested by classical two dimensional linear passive-transport problems, such as linear advection, rotation and swirling deformation. The scheme is applied to solve the nonlinear Vlasov–Poisson system and guiding center Vlasov model using high order tracing schemes. The effectiveness of the proposed conservative semi-Lagrangian scheme is demonstrated numerically by extensive numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Cai, X., Guo, W., Qiu, J.-M.: A high order conservative semi-Lagrangian discontinuous Galerkin method for two-dimensional transport simulations. J. Sci. Comput. 73, 514–542 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cai, X., Guo, W., Qiu, J.-M.: A high order semi-Lagrangian discontinuous Galerkin method for Vlasov–Poisson simulations without operator splitting. J. Comput. Phys. 354, 529–551 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carrillo, J.A., Vecil, F.: Nonoscillatory interpolation methods applied to Vlasov-based models. SIAM J. Sci. Comput. 29, 1179–1206 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng, C.-Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330–351 (1976)

    Article  Google Scholar 

  5. Christlieb, A., Guo, W., Morton, M., Qiu, J.-M.: A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations. J. Comput. Phys. 267, 7–27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Crouseilles, N., Mehrenberger, M., Sonnendrücker, E.: Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys. 229, 1927–1953 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Enright, D., Losasso, F., Fedkiw, R.: A fast and accurate semi-Lagrangian particle level set method. Comput. Struct. 83, 479–490 (2005)

    Article  MathSciNet  Google Scholar 

  8. Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172, 166–187 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frenod, E., Hirstoaga, S.A., Lutz, M., Sonnendrücker, E.: Long time behaviour of an exponential integrator for a Vlasov–Poisson system with strong magnetic field. Commun. Comput. Phys. 18, 263–296 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Glassey, R.T.: The Cauchy Problem in Kinetic Theory, vol. 52. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  11. Guo, W., Nair, R.D., Qiu, J.-M.: A conservative semi-Lagrangian discontinuous Galerkin scheme on the cubed sphere. Mon. Weather Rev. 142, 457–475 (2014)

    Article  Google Scholar 

  12. Guo, W., Qiu, J.-M.: Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation. J. Comput. Phys. 234, 108–132 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huot, F., Ghizzo, A., Bertrand, P., Sonnendrücker, E., Coulaud, O.: Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov–Maxwell system. J. Comput. Phys. 185, 512–531 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, S.-J., Rood, R.B.: Multidimensional flux-form semi-Lagrangian transport schemes. Mon. Weather Rev. 124, 2046–2070 (1996)

    Article  Google Scholar 

  15. Morton, K., Priestley, A., Suli, E.: Stability of the Lagrange–Galerkin method with non-exact integration. RAIRO-Modélisation mathématique et analyse numérique 22, 625–653 (1988)

    MathSciNet  MATH  Google Scholar 

  16. Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier–Stokes equations. Numerische Mathematik 38, 309–332 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Qiu, J.-M., Christlieb, A.: A conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229, 1130–1149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Qiu, J.-M., Russo, G.: A high order multi-dimensional characteristic tracing strategy for the Vlasov–Poisson system. J. Sci. Comput. 71, 414–434 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Qiu, J.-M., Shu, C.-W.: Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. J. Comput. Phys. 230, 863–889 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Qiu, J.-M., Shu, C.-W.: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system. J. Comput. Phys. 230, 8386–8409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rossmanith, J.A., Seal, D.C.: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov–Poisson equations. J. Comput. Phys. 230, 6203–6232 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shoucri, M.M.: A two-level implicit scheme for the numerical solution of the linearized vorticity equation. Int. J. Numer. Methods Eng. 17, 1525–1538 (1981)

    Article  MATH  Google Scholar 

  23. Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51, 82–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149, 201–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Staniforth, A., Côté, J.: Semi-Lagrangian integration schemes for atmospheric models-a review. Mon. Weather Rev. 119, 2206–2223 (1991)

    Article  Google Scholar 

  27. Strain, J.: Semi-Lagrangian methods for level set equations. J. Comput. Phys. 151, 498–533 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiong, T., Qiu, J.-M., Russo, G.: High order multi-dimensional characteristic tracing for the incompressible Euler equation and the guiding-center Vlasov equation. J. Sci. Comput. (2018). https://doi.org/10.1007/s10915-018-0705-y)

  29. Xiu, D., Karniadakis, G.E.: A semi-Lagrangian high-order method for Navier–Stokes equations. J. Comput. Phys. 172, 658–684 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang, C., Filbet, F.: Conservative and non-conservative methods based on hermite weighted essentially non-oscillatory reconstruction for Vlasov equations. J. Comput. Phys. 279, 18–36 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The final draft of this paper is completed, while the authors were in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the Collaboration@ICERM program, supported by the National Science Foundation under Grant No. DMS-1439786.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Mei Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

T. Xiong: Research supported by NSF Grant of Fujian Province 2016J05022, NSFC Grant 11601455, NSAF Grant U1630247,the Fundamental Research Funds for the Central Universities No. 20720160009 and the Marie Skłodowska-Curie Individual Fellowships H2020-MSCA-IF-2014 of the European Commision, under the Project HNSKMAP 654175. G. Russo: The work has been partially supported by ITN-ETN Horizon 2020 Project ModCompShock, Modeling and Computation on Shocks and Interfaces, Project Reference 642768. J.-M. Qiu: Research supported by Air Force Office of Scientific Computing Grant FA9550-18-1-0257, NSF Grant NSF-DMS-1818924 and University of Delaware.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, T., Russo, G. & Qiu, JM. Conservative Multi-dimensional Semi-Lagrangian Finite Difference Scheme: Stability and Applications to the Kinetic and Fluid Simulations. J Sci Comput 79, 1241–1270 (2019). https://doi.org/10.1007/s10915-018-0892-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0892-6

Keywords

Navigation