Advertisement

Journal of Scientific Computing

, Volume 79, Issue 1, pp 593–623 | Cite as

Error Estimates of Energy Stable Numerical Schemes for Allen–Cahn Equations with Nonlocal Constraints

  • Shouwen Sun
  • Xiaobo Jing
  • Qi WangEmail author
Article

Abstract

We present error estimates for four unconditionally energy stable numerical schemes developed for solving Allen–Cahn equations with nonlocal constraints. The schemes are linear and second order in time and space, designed based on the energy quadratization (EQ) or the scalar auxiliary variable (SAV) method, respectively. In addition to the rigorous error estimates for each scheme, we also show that the linear systems resulting from the energy stable numerical schemes are all uniquely solvable. Then, we present some numerical experiments to show the accuracy of the schemes, their volume-preserving as well as energy dissipation properties in a drop merging simulation.

Keywords

Energy stable schemes Energy quadratization methods Scalar auxiliary variable methods Error estimates Finite difference methods 

Notes

Acknowledgements

Qi Wang’s research is partially supported by NSF awards DMS-1517347, DMS-1815921 and OIA-1655740, and NSFC awards #11571032, #91630207 and NSAF-U1530401.

References

  1. 1.
    Baskaran, A., Lowengrub, J.S., Wang, C., Wise, S.M.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51(5), 2851–2873 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boyer, F.: Mathematical study of multiphase flow under shear through order parameter formulation. Asymptot. Anal. 20(2), 175–212 (1999)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cai, Y., Choi, H., Shen, J.: Error estimates for time discretizations of Cahn–Hilliard and Allen–Cahn phase-field models for two-phase incompressible flows. Numerische Mathematik 137(2), 417–449 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, R., Ji, G., Yang, X., Zhang, H.: Decoupled energy stable schemes for phase-field vesicle membrane model. J. Comput. Phys. 302, 509–523 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, W., Wang, C., Wang, X., Wise, S.M.: A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 59(3), 574–601 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198(2), 450–468 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28(5), 1310–1322 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gong, Y., Zhao, J., Wang, Q.: Linear second order in time energy stable schemes for hydrodynamic models of binary mixtures based on a spatially pseudospectral approximation. Adv. Comput. Math. (2018).  https://doi.org/10.1007/s10444-018-9597-5
  9. 9.
    Guan, Z., Lowengrub, J., Wang, C.: Convergence analysis for second-order accurate schemes for the periodic nonlocal Allen–Cahn and Cahn–Hilliard equations. Math. Methods Appl. Sci. 40(18), 6836–6863 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Guo, R., Ji, L., Xu, Y.: High order local discontinuous galerkin methods for the Allen–Cahn equation: analysis and simulation. J. Comput. Math. 34(2), 135–158 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gurtin, M.E., Polignone, D., Vinals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Methods Appl. Sci. 6(6), 815–831 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jing, X., Li, J., Zhao, X., Wang, Q.: Second order linear energy stable schemes for Allen–Cahn equations with nonlocal constraints. arXiv preprint arXiv:1810.05311 (2018)
  13. 13.
    Karali, G., Nagase, Y., RicciardiI, T.: On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete Contin. Dyn. Syst. Ser. S 7(1), 127–137 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Li, H., Ju, L., Zhang, C., Peng, Q.: Unconditionally energy stable linear schemes for the diffuse interface model with Peng–Robinson equation of state. J. Sci. Comput. 75(2), 993–1015 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lin, P., Liu, C.: Simulations of singularity dynamics in liquid crystal flows: a c0 finite element approach. J. Comput. Phys. 215(1), 348–362 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. A Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Rubinstein, J., Sternberg, P.: Nonlocal reactionłdiffusion equations and nucleation. IMA J. Appl. Math. 48(3), 249–264 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50(1), 105–125 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. Ser. A (DCDS-A) 28(4), 1669–1691 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Teigen, K.E., Song, P., Lowengrub, J., Voigt, A.: A diffuse-interface method for two-phase flows with soluble surfactants. J. Comput. Phys. 230(2), 375–393 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wang, C., Wang, X., Wise, S .M.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst. Ser. A (DCDS-A) 28(1), 405–423 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49(3), 945–969 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wang, L., Yu, H.: Convergence analysis of an unconditionally energy stable linear Crank–Nicolson scheme for the Cahn–Hilliard equation. SIAM J. Numer. Anal. 51(1), 89–114 (2018)MathSciNetGoogle Scholar
  24. 24.
    Wu, X., Van Zwieten, G.J., van der Zee, K.G.: Stabilized second-order convex splitting schemes for Cahn–Hilliard models with application to diffuse-interface tumor-growth models. Int. J. Numer. Methods Biomed. Eng. 30(2), 180–203 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44(4), 1759–1779 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yang, X., Forest, M.G., Wang, Q.: Near equilibrium dynamics and one-dimensional spatial–temporal structures of polar active liquid crystals. Chin. Phys. B 23(11), 75–100 (2014)Google Scholar
  28. 28.
    Yang, X., Zhang, G.: Numerical approximations of the Cahn–Hilliard and Allen–Cahn equations with general nonlinear potential using the invariant energy quadratization approach. arXiv preprint arXiv:1712.02760 (2017)
  29. 29.
    Yang, X., Zhao, J., He, X.: Linear, second order and unconditionally energy stable schemes for the viscous Cahn–Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method. J. Comput. Appl. Math. 343, 80–97 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method. Math. Methods Appl. Sci. 27(11), 1993–2030 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Yu, H., Yang, X.: Numerical approximations for a phase-field moving contact line model with variable densities and viscosities. J. Comput. Phys. 334, 665–686 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Yue, P., Feng, J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Zhao, J., Wang, Q., Yang, X.: Numerical approximations to a new phase field model for two phase flows of complex fluids. Comput. Methods Appl. Mech. Eng. 310, 77–97 (2016)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zhao, J., Wang, Q., Yang, X.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Methods Eng. 110(3), 279–300 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Zhao, J., Yang, X., Gong, Y., Wang, Q.: A novel linear second order unconditionally energy stable scheme for a hydrodynamic q-tensor model of liquid crystals. Comput Methods Appl. Mech. Eng. 318, 803–825 (2017)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Zhao, J., Yang, X., Li, J., Wang, Q.: Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals. SIAM J. Sci. Comput. 38(5), A3264–A3290 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing Computational Science Research CenterBeijingPeople’s Republic of China
  2. 2.Department of MathematicsUniversity of South CarolinaColumbiaUSA
  3. 3.School of Materials Science and EngineeringNankai UniversityTianjinChina

Personalised recommendations