Skip to main content
Log in

The Temporal Second Order Difference Schemes Based on the Interpolation Approximation for the Time Multi-term Fractional Wave Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, two temporal second-order schemes are derived and analyzed for the time multi-term fractional diffusion-wave equation based on the order reduction technique. The weighted average at two time levels is applied to the discretization of the spatial derivative, in which the weight coefficient corresponds to the optimal point for the time discretization. The two difference schemes are proved to be uniquely solvable. The stability and convergence are rigorously investigated utilizing the energy method. In addition, a fast difference scheme is also presented. The applicability and the accuracy of the schemes are demonstrated by several numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Compte, A., Metzler, R.: The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A Math. Gen. 30, 7277–7289 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Godoy, S., Garcia-Colin, L.S.: From the quantum random walk to classical mesoscopic diffusion in crystalline solids. Phys. Rev. E 53, 5779–5785 (1996)

    Article  Google Scholar 

  3. Srivastava, V., Rai, K.N.: A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues. Math. Comput. Model. 51, 616–624 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Povstenko, Y.Z.: Fractional Cattaneo-type equations and generalized thermoelasticity. J. Therm. Stress. 34, 97–114 (2011)

    Article  Google Scholar 

  5. Sun, H.G., Li, Z.P., Zhang, Y., Chen, W.: Fractional and fractal derivative models for transient anomalous diffusion: Model comparison. Chaos Solitons Fractals (2017). https://doi.org/10.1016/j.chaos.2017.03.060

  6. Sun, H.G., Chen, W., Chen, Y.Q.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)

    Article  Google Scholar 

  7. Sun, H.G., Zhang, Y., Chen, W., Reeves, D.M.: Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media. J. Contam. Hydrol. 157, 47–58 (2014)

    Article  Google Scholar 

  8. Luchko, Y.: Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374, 538–548 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Shiralashetti, S.C., Deshi, A.B.: An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations. Nonlinear Dyn. 83, 293–303 (2016)

    Article  MathSciNet  Google Scholar 

  10. Srivastava, V., Rai, K.N.: A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues. Math. Comput. Model. 51, 616–624 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 9–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dehghan, M., Abbaszadeh, M.: Analysis of the element free Galerkin (EFG) method for solving fractional cable equation with Dirichlet boundary condition. Appl. Numer. Math. 109, 208–234 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Abbaszadeh, M., Dehghan, M.: An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer. Algorithm 75, 173–211 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dehghan, M., Abbaszadeh, M.: Element free Galerkin approach based on the reproducing kernel particle method for solving 2D fractional Tricomi-type equation with Robin boundary condition. Comput. Math. Appl. 73, 1270–1285 (2017)

    Article  MathSciNet  Google Scholar 

  16. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, San Diego (1974)

    MATH  Google Scholar 

  17. Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Du, R., Cao, W., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34, 2998–3009 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, Y.N., Sun, Z.Z., Zhao, X.: Compact alternating direction implicit schemes for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, 1535–1555 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhao, X., Sun, Z.Z.: Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 62, 747–771 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhao, X., Sun, Z.Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun, H., Sun, Z.Z., Gao, G.H.: Some temporal second order difference schemes for fractional wave equations. Numer. Methods Part. Differ. Equ. 32, 970–1001 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dehghan, M., Abbaszadeh, M., Deng, W.H.: Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation. Appl. Math. Lett. 73, 120–127 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ghazizadeh, H.R., Maerefat, M., Azimi, A.: Explicit and implicitt finite difference schemes for fractional Cattaneo equation. J. Comput. Phys. 229, 7042–7057 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, C.P., Cao, J.X.: A finite difference method for time-fractional telegraph equation. In: 2012 IEEE/ASME International Conference, pp. 314–318 (2012)

  26. Vong, S.W., Pang, H.K., Jin, X.Q.: A high-order difference scheme for the generalized Cattaneo equation. East Asian J. Appl. Math. 2, 170–184 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhou, J., Xu, D., Chen, H.B.: A weak Galerkin finite element method for multi-term time-fractional diffusion equations. East Asian J. Appl. Math. 8, 181–193 (2018)

    MathSciNet  Google Scholar 

  28. Li, G.S., Sun, C.L., Jia, X.Z., Du, D.H.: Numerical solution to the multi-term time fractional diffusion equation in a finite domain. Numer. Math. Theor. Meth. Appl. 9, 337–357 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zheng, M., Liu, F., Anh, V., Turner, I.: A high-order spectral method for the multi-term time-fractional diffusion equations. Appl. Math. Model. 40, 4970–4985 (2016)

    Article  MathSciNet  Google Scholar 

  30. Salehi, R.: A meshless point collocation method for 2-D multi-term time fractional diffusion-wave equation. Numer. Algorithm 74, 1145–1168 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Abdel-Rehim, E.A., El-Sayed, A.M.A., Hashem, A.S.: Simulation of the approximate solutions of the time-fractional multi-term wave equations. Comput. Math. Appl. 73, 1134–1154 (2017)

    Article  MathSciNet  Google Scholar 

  32. Liu, Y.: Strong maximum principle for multi-term time-fractional diffusion equations and its application to an inverse source problem. Comput. Math. Appl. 73, 96–108 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290, 174–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ren, J.C., Sun, Z.Z.: Efficient Numerical solution of the multi-term time fractional diffusion-dave equation. East Asian J. Appl. Math. 5, 1–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 1–17 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Brunner, H., Han, H., Yin, D.: Artificial boundary conditions and finite difference approximations for a time-fractional diffusion-wave equation on a two-dimensional unbounded spatial domain. J. Comput. Phys. 276, 541–562 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gao, G.H., Alikhanov, A.A., Sun, Z.Z.: The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations. J. Sci. Comput. 73, 93–121 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)

    Article  MathSciNet  Google Scholar 

  40. Yan, Y.G., Sun, Z.Z., Zhang, J.W.: Fast evalution of the Caputo fractional derivative and its applications to fractional diffusion equations: A second-order scheme. Commun. Comput. Phys. 22, 1028–1048 (2017)

    Article  MathSciNet  Google Scholar 

  41. Alikhanov, A.A.: A new difference scheme for the fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, New York (1997)

    MATH  Google Scholar 

  43. Sun, Z.Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012). in Chinese

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-zhong Sun.

Additional information

The research is supported by the National Natural Science Foundation of China (Grant Nos. 11671081, 11701229, 11701081), Natural Science Youth Foundation of Jiangsu Province (Nos. BK20170567, BK20160660) and the Fundamental Research Funds for the Central Universities (No. 2242016K41029), the Jiangsu Provincial Key Laboratory of Networked Collective Intelligence (No. BM2017002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Zhao, X. & Sun, Zz. The Temporal Second Order Difference Schemes Based on the Interpolation Approximation for the Time Multi-term Fractional Wave Equation. J Sci Comput 78, 467–498 (2019). https://doi.org/10.1007/s10915-018-0820-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0820-9

Keywords

Navigation