Skip to main content
Log in

Low-Dimensional Spatial Embedding Method for Shape Uncertainty Quantification in Acoustic Scattering by 2D Star Shaped Obstacles

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper introduces a novel boundary integral approach of shape uncertainty quantification for the Helmholtz scattering problem in the framework of the so-called parametric method. The key idea is to construct an integration grid whose associated weight function encompasses the irregularities and non-smoothness imposed by the random boundary. Thus, the solution can be evaluated accurately with relatively low number of grid points. The integration grid is obtained by employing a low-dimensional spatial embedding using the coarea formula. The proposed method can handle large variation as well as non-smoothness of the random boundary. For the ease of presentation the theory is restricted to star-shaped obstacles in low-dimensional setting. Higher spatial and parametric dimensional cases are discussed, though, not extensively explored in the current study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bejan, A.: Shape and Structure, from Engineering to Nature. Shape and Structure, from Engineering to Nature. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Boyd, J.: Chebyshev and Fourier Spectral Methods: Second Revised edn. Dover Books on Mathematics. Dover Publications, Mineola (2013)

    Google Scholar 

  3. Bremer, J.: A fast direct solver for the integral equations of scattering theory on planar curves with corners. J. Comput. Phys. 231(4), 1879–1899 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Canuto, C., Hussaini, M., Quarteroni, A., Thomas, A.J.: Spectral Methods in Fluid Dynamics. Scientific Computation. Springer, Berlin (2012)

    MATH  Google Scholar 

  5. Canuto, C., Kozubek, T.: A fictitious domain approach to the numerical solutions of PDEs in stochastic domains. Numer. Math. 107, 257–293 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castrillón-Candás, J.E., Nobile, F., Tempone, R.F.: Analytic regularity and collocation approximation for elliptic PDEs with random domain deformations. Comput. Math. Appl. 71(6), 1173–1197 (2016)

    Article  MathSciNet  Google Scholar 

  7. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  8. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Courier Dover Publications, Mineola (2007)

    MATH  Google Scholar 

  9. Dini, U.: Lezioni di analisi infinitesimale. Universitá di Pisa, Pisa (1887)

    MATH  Google Scholar 

  10. Ditkowski, A., Harness, Y.: Wave scattering by randomly shaped objects. J. Appl. Numer. Math. 62, 1819–1836 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93(3), 418–491 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ghanem, R.G., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Springer, Berlin (2002)

    MATH  Google Scholar 

  13. Golomb, M., Weinberger, H.F.: Optimal Approximation and Error Bounds in Numerical Approximation. University of Wisconsin Press, Wisconsin (1959)

    MATH  Google Scholar 

  14. Haber, S.: Numerical evaluation of multiple integrals. SIAM Rev. 12(4), 481–526 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hao, S., Barnett, A.H., Martinsson, P.G., Young, P.: High-order accurate methods for Nyström discretization of integral equations on smooth curves in the plane. Adv. Comput. Math. 40(1), 245–272 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Harbrecht, H., Peters, M., Siebenmorgen, M.: Analysis of the domain mapping method for elliptic diffusion problems on random domains. Numer. Math. 134(4), 823–856 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Harness, Y.: Wave Scattering by Randomly Shaped Obstacles. Thesis, Tel Aviv University (2013)

  18. Harness, Y., Ditkowski, A.: The null-field method: a reconstruction kernel approach. J. Comput. Phys. 248, 127–146 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hiptmair, R., Scarabosio, L., Schillings, C., Schwab, C.: Large deformation shape uncertainty quantification in acoustic scattering. Technical report, Zürich (2015)

  20. Holtz, M.: Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance. Lecture Notes in Computational Science and Engineering. Springer, Berlin (2010)

    Google Scholar 

  21. Kolm, P., Rokhlin, V.: Numerical quadratures for singular and hypersingular integrals. Comput. Math. Appl. 41(3), 327–352 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kress, R.: Linear Integral Equations. Applied Mathematical Sciences. Springer, New York (2013)

    Google Scholar 

  23. Louis, A.K.: Feature reconstruction in inverse problems. Inverse Probl. 27(6), 065010 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Louis, A.K.: A unified approach to regularization methods for linear ill-posed problems. Inverse Probl. 15, 489–498 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Louis, A.K., Maass, P.: A mollifier method for linear operator equations of the first kind. Inverse Probl. 6, 427–440 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Martin, P.: Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  27. Micchelli, C.A., Rivlin, T.J.: A Survey of Optimal Recovery in Optimal Estimation in Approximation Theory. Plenum Press, New York (1985)

    Google Scholar 

  28. Nouy, A., Clment, A., Schoefs, F., Moës, N.: An extended stochastic finite element method for solving stochastic partial differential equations on random domains. Comput. Methods Appl. Mech. Eng. 197(51–52), 4663–4682 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nouy, A., Schoefs, F., Moës, N.: X-SFEM, a computational technique based on X-FEM to deal with random shapes. Eur. J. Comput. Mech. 16(2), 277–293 (2007)

    Article  MATH  Google Scholar 

  30. Sauter, S., Schwab, C.: Boundary Element Methods. Springer Series in Computational Mathematics. Springer, Berlin (2010)

    Google Scholar 

  31. Sethian, J.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  32. Tartakovsky, D., Xiu, D.: Numerical methods for differential equations in random domain. SIAM J. Sci. Comput. 28(3), 1167–1185 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tartakovsky, D., Xiu, D.: Stochastic analysis of transport in tubes with rough walls. J. Comput. Phys. 217(1), 248–259 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wan, X., Xiu, D., Karnidakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187, 137–167 (2003)

    Article  MathSciNet  Google Scholar 

  35. Warnick, K., Chew, W.: Numerical simulation methods for rough surface scattering. Waves Random Complex Media 11(1), 1–30 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Waterman, P.C.: Matrix formulation of electromagnetic scattering. Proc. IEEE 53(8), 805–812 (1965)

    Article  MATH  Google Scholar 

  37. Waterman, P.C.: New formulation of acoustic scattering. J. Acoust. Soc. Am. 45(6), 1417–1429 (1969)

    Article  MATH  Google Scholar 

  38. Wiener, N.: The homogeneous chaos. Am. J. Math. 60, 897–936 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wriedt, T.: Light scattering theory and programs: discussion of latest advances and open problems. J. Quant. Spectrosc. Radiat. Transf. 113, 2465–2469 (2012)

    Article  Google Scholar 

  40. Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton (2010)

    Book  MATH  Google Scholar 

  41. Xiu, D., Karnidakis, G.E.: Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Methods Appl. Math. Eng. 11, 4927–4948 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xiu, D., Karnidakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 26–40 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuval Harness.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harness, Y. Low-Dimensional Spatial Embedding Method for Shape Uncertainty Quantification in Acoustic Scattering by 2D Star Shaped Obstacles. J Sci Comput 78, 1601–1631 (2019). https://doi.org/10.1007/s10915-018-0818-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0818-3

Keywords

Mathematics Subject Classification

Navigation