Advertisement

Journal of Scientific Computing

, Volume 78, Issue 2, pp 1152–1173 | Cite as

Mesh Smoothing for the Spectral Element Method

  • Ketan MittalEmail author
  • Paul Fischer
Article

Abstract

Laplacian- and optimization-based mesh-improvement methods are developed for high-order finite- and spectral-element based on 2D quadrilateral and 3D hexahedral meshes in general domains. A robust high-order interpolation library is used during the mesh smoothing process to improve the quality of the surface mesh while retaining the integrity of the original surface approximation. Boundary layer resolution in the original mesh is preserved through various controls in the smoothing process, including weighted interpolation between the optimized and original mesh. All mesh motion and gradient evaluations are performed on an element-by-element basis to ensure that all elements in a large mesh can be smoothed in parallel with minimum communication between different processors. Mesh quality improvements are shown to reduce the condition number of the preconditioned linear systems governing the numerical solution of the discretized partial differential equations, with corresponding reductions in iteration counts. The mesh smoother is tested on various meshes and is found to significantly improve the computational efficiency of calculations.

Keywords

High-order Mesh smoothing Optimization Boundary layer Condition number Parallel 

Notes

Acknowledgements

The authors would like to thank Patrick Knupp for helpful discussions. This material is based upon work supported in part by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, under Contract DE-AC02-06CH11357, and in part by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security Administration) responsible for the planning and preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering, and early testbed platforms, in support of the nation’s exascale computing imperative. The research also used resources of the Argonne Leadership Computing Facility, which is supported by the U.S. Department of Energy, Office of Science, under Contract DE-AC02-06CH11357, and from the Blue Waters sustained-petascale computing Project, which is supported by the National Science Foundation (Awards OCI-0725070 and ACI-1238993) and the state of Illinois.

References

  1. 1.
    Branets, L., Carey, G.F.: Extension of a mesh quality metric for elements with a curved boundary edge or surface. J. Comput. Inf. Sci. Eng. 5(4), 302–308 (2005)CrossRefGoogle Scholar
  2. 2.
    Canann, S.A., Stephenson, M.B., Blacker, T.: Optismoothing: an optimization-driven approach to mesh smoothing. Finite Elem. Anal. Design 13(2–3), 185–190 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Canann, S.A., Tristano, J.R., Staten, M.L., Drive, T.: An approach to combined laplacian and optimization-based smoothing for triangular, quadrilateral, and quad-dominant meshes. In: IMR, pp. 479–494. Citeseer (1998)Google Scholar
  4. 4.
    Canuto, C., Gervasio, P., Quarteroni, A.: Finite-element preconditioning of G-NI spectral methods. SIAM J. Sci. Comput. 31(6), 4422–4451 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Thomas Jr., A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (2012)zbMATHGoogle Scholar
  6. 6.
    Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow, vol. 9. Cambridge University Press, Cambridge (2002)zbMATHCrossRefGoogle Scholar
  7. 7.
    Dey, S., Obara, R.M., Shephard, M.S.: Curvilinear mesh generation in 3D. In: IMR, pp. 407–417 (1999)Google Scholar
  8. 8.
    Dey, S., Shephard, M.S., Flaherty, J.E.: Geometry representation issues associated with p-version finite element computations. Comput. Methods Appl. Mech. Eng. 150(1–4), 39–55 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dobrev, V.A., Kolev, T.V., Rieben, R.N.: High-order curvilinear finite element methods for lagrangian hydrodynamics. SIAM J. Sci. Comput. 34(5), B606–B641 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Erickson, J.: Theoretical advances in hexahedral mesh generation. http://jeffe.cs.illinois.edu/pubs/talks/hexmesh-survey-socg.pdf. Accessed 29 Aug 2016
  11. 11.
    Fischer, P., Schmitt, M., Tomboulides, A.: Recent developments in spectral element simulations of moving-domain problems. Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, pp. 213–244. Springer, New York (2017)CrossRefzbMATHGoogle Scholar
  12. 12.
    Fischer, P.F.: An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 133(1), 84–101 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Fischer, P.F.: Scaling limits for PDE-based simulation. In: 22nd AIAA Computational Fluid Dynamics Conference, p. 3049 (2015)Google Scholar
  14. 14.
    Fischer, P.F., Lottes, J.W.: Hybrid Schwarz-multigrid methods for the spectral element method: extensions to Navier-Stokes. In: Barth, T.J., et al. (eds.) Domain Decomposition Methods in Science and Engineering, pp. 35–49. Springer, Berlin (2005)CrossRefzbMATHGoogle Scholar
  15. 15.
    Fischer, P.F., Tufo, H.M., Miller, N.I., Tufo, H.M.: An overlapping Schwarz method for spectral element simulation of three-dimensional incompressible flows. In: Bjørstad, P., Luskin, M. (eds.) Parallel Solution of Partial Differential Equations, pp. 159–180. Springer, Berlin (2000)CrossRefzbMATHGoogle Scholar
  16. 16.
    Freitag, L., Jones, M., Plassmann, P.: A parallel algorithm for mesh smoothing. SIAM J. Sci. Comput. 20(6), 2023–2040 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Freitag, L.A.: On combining Laplacian and optimization-based mesh smoothing techniques. ASME Appl. Mech. Divi. Publ. AMD 220, 37–44 (1997)Google Scholar
  18. 18.
    Freitag, L.A., Knupp, P.M.: Tetrahedral mesh improvement via optimization of the element condition number. Int. J. Numer. Methods Eng. 53(6), 1377–1391 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Freitag, L.A., Plassmann, P.: Local optimization-based simplicial mesh untangling and improvement. Int. J. Numer. Methods Eng. 49(1), 109–125 (2000)zbMATHCrossRefGoogle Scholar
  20. 20.
    Gargallo-Peiró, A., Roca, X., Peraire, J., Sarrate, J.: Defining quality measures for validation and generation of high-order tetrahedral meshes. In: Proceedings of the 22nd International Meshing Roundtable, pp. 109–126. Springer (2014)Google Scholar
  21. 21.
    Gordon, W.J., Hall, C.A.: Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer. Math. 21(2), 109–129 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Gorman, G.J., Southern, J., Farrell, P.E., Piggott, M., Rokos, G., Kelly, P.H.: Hybrid OpenMP/MPI anisotropic mesh smoothing. Procedia Comput. Sci. 9, 1513–1522 (2012)CrossRefGoogle Scholar
  23. 23.
    Heath, M.T.: Scientific Computing. McGraw-Hill, New York (2002)Google Scholar
  24. 24.
    Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems, vol. 21. Cambridge University Press, Cambridge (2007)zbMATHCrossRefGoogle Scholar
  25. 25.
    Jansen, K.E., Shephard, M.S., Beall, M.W.: On anisotropic mesh generation and quality control in complex flow problems. In: IMR (2001)Google Scholar
  26. 26.
    Knupp, P.: Introducing the target-matrix paradigm for mesh optimization via node-movement. Eng. Comput. 28(4), 419–429 (2012)CrossRefGoogle Scholar
  27. 27.
    Knupp, P.M.: Hexahedral mesh untangling & algebraic mesh quality metrics. In: IMR, pp. 173–183. Citeseer (2000)Google Scholar
  28. 28.
    Knupp, P.M.: A method for hexahedral mesh shape optimization. Int. J. Numer. Methods Eng. 332(November 2002), 319–332 (2003).  https://doi.org/10.1002/nme.768 zbMATHCrossRefGoogle Scholar
  29. 29.
    Kreiss, H.O., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24(3), 199–215 (1972).  https://doi.org/10.1111/j.2153-3490.1972.tb01547.x MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lottes, J.W., Fischer, P.F.: Hybrid multigrid/Schwarz algorithms for the spectral element method. J. Sci. Comput. 24(1), 45–78 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Luo, X., Shephard, M.S., Remacle, J.F.: The influence of geometric approximation on the accuracy of high order methods. Rensselaer SCOREC Report, vol. 1 (2001)Google Scholar
  32. 32.
    Luo, X.J., Shephard, M.S., Obara, R.M., Nastasia, R., Beall, M.W.: Automatic p-version mesh generation for curved domains. Eng. Comput. 20(3), 273–285 (2004)CrossRefGoogle Scholar
  33. 33.
    Lynch, R.E., Rice, J.R., Thomas, D.H.: Direct solution of partial difference equations by tensor product methods. Numer. Math. 6(1), 185–199 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Maday, Y., Patera, A.T.: Spectral element methods for the incompressible Navier–Stokes equations. In: IN: State-of-the-Art Surveys on Computational Mechanics (A90-47176 21-64). New York, American Society of Mechanical Engineers, 1989, p. 71–143. Research Supported by DARPA., vol. 1, pp. 71–143 (1989)Google Scholar
  35. 35.
    Maday, Y., Patera, A.T., Rønquist, E.M.: An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput. 5(4), 263–292 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Merzari, E., Heisey, K., Fischer, P.: Nek deep dive. https://cesar.mcs.anl.gov/sites/cesar.mcs.anl.gov/files/nekbone_0_1_1.pdf. Accessed 16 July 2017
  37. 37.
    Noguchi, S., Takada, A., Nobuyama, F., Miwa, M., Igarashi, H.: A new mesh smoothing method to improve the condition number of submatrices of coefficient matrix in edge finite element method. IEEE Trans. Magn. 49(5), 1705–1708 (2013)CrossRefGoogle Scholar
  38. 38.
    Orszag, S.A.: Spectral methods for problems in complex geometries. J. Comput. Phys. 37(1), 70–92 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54(3), 468–488 (1984)zbMATHCrossRefGoogle Scholar
  40. 40.
    Perot, J.B.: An analysis of the fractional step method. J. Comput. Phys. 108(1), 51–58 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Salem, A., Saigal, S., Canann, S.A.: Mid-node admissible space for 3D quadratic tetrahedral finite elements. Eng. Comput. 17(1), 39–54 (2001)zbMATHCrossRefGoogle Scholar
  42. 42.
    Sherwin, S., Peiró, J.: Mesh generation in curvilinear domains using high-order elements. Int. J. Numer. Methods Eng. 53(1), 207–223 (2002)zbMATHCrossRefGoogle Scholar
  43. 43.
    Sherwin, S.J., Warburton, T.C., Karniadakis, G.E.: Spectral/hp methods for elliptic problems on hybrid grids. Contemp. Math. 218, 191–216 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Shewchuk, J.: What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures (preprint). Univ. Calif. Berkeley 73, 12 (2002)Google Scholar
  45. 45.
    Taubin, G.: Linear anisotropic mesh filtering. Research and Report RC2213 IBM , vol. 1(4) (2001)Google Scholar
  46. 46.
    Tufo, H.M., Fischer, P.F.: Fast parallel direct solvers for coarse grid problems. J. Parallel Distrib. Comput. 61(2), 151–177 (2001)zbMATHCrossRefGoogle Scholar
  47. 47.
    Warburton, T., Lomtev, I., Du, Y., Sherwin, S., Karniadakis, G.: Galerkin and discontinuous galerkin spectral/hp methods. Comput. Methods Appl. Mech. Eng. 175(3–4), 343–359 (1999)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mechanical EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Computer ScienceUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations