Skip to main content
Log in

On the Algebraic Construction of Sparse Multilevel Approximations of Elliptic Tensor Product Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider the solution of elliptic problems on the tensor product of two physical domains as for example present in the approximation of the solution covariance of elliptic partial differential equations with random input. Previous sparse approximation approaches used a geometrically constructed multilevel hierarchy. Instead, we construct this hierarchy for a given discretized problem by means of the algebraic multigrid method. Thereby, we are able to apply the sparse grid combination technique to problems given on complex geometries and for discretizations arising from unstructured grids, which was not feasible before. Numerical results show that our algebraic construction exhibits the same convergence behaviour as the geometric construction, while being applicable even in black-box type PDE solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balder, R., Zenger, C.: The solution of multidimensional real Helmholtz equations on sparse grids. SIAM J. Sci. Comput. 17(3), 631–646 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bramble, J., Pasciak, J., Xu, J.: Parallel multilevel preconditioners. Math. Comput. 55, 1–22 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bungartz, H.J.: A multigrid algorithm for higher order finite elements on sparse grids. ETNA. Electron. Trans. Numer. Anal. 6, 63–77 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13, 1–123 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dahmen, W.: Wavelet and multiscale methods for operator equations. Acta Numer. 6, 55–228 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Falgout, R.D., Yang, U.M.: hypre: A library of high performance preconditioners. In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.) Computational Science – ICCS 2002, pp. 632–641. Springer, Berlin, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Griebel, M.: Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen. Teubner Skripten zur Numerik. B.G. Teubner, Stuttgart (1993)

  8. Griebel, M.: Multilevel algorithms considered as iterative methods on semidefinite systems. SIAM Int. J. Sci. Stat. Comput. 15(3), 547–565 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Griebel, M., Harbrecht, H.: On the convergence of the combination technique. In: Garcke, J., Pflüger, D. (eds.) Sparse Grids and Applications - Stuttgart 2014. Lecture Notes in Computational Science and Engineering, vol. 97, pp. 55–74. Springer, Berlin (2014)

    Google Scholar 

  10. Griebel, M., Oswald, P.: Greedy and randomized versions of the multiplicative Schwarz method. Linear Algebr. Appl. 7, 1596–1610 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problems. In: de Groen, P., Beauwens, R. (eds.) Iterative Methods in Linear Algebra, pp. 263–281. IMACS, Elsevier, North Holland (1992)

    Google Scholar 

  12. Harbrecht, H.: A finite element method for elliptic problems with stochastic input data. Appl. Numer. Math. 60(3), 227–244 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harbrecht, H., Peters, M., Schneider, R.: On the low-rank approximation by the pivoted Cholesky decomposition. Appl. Numer. Math. 62(4), 428–440 (2012)

  14. Harbrecht, H., Peters, M., Siebenmorgen, M.: Combination technique based \(k\)-th moment analysis of elliptic problems with random diffusion. J. Comput. Phys. 252(C), 128–141 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harbrecht, H., Schneider, R., Schwab, C.: Multilevel frames for sparse tensor product spaces. Numer. Math. 110(2), 199–220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hegland, M., Garcke, J., Challis, V.: The combination technique and some generalisations. Linear Algebr. Appl. 420(2), 249–275 (2007)

  17. Oswald, P.: Multilevel finite element approximation. Theory and applications. Teubner Skripten zur Numerik. B.G. Teubner, Stuttgart (1994)

  18. Ruge, J., Stüben, K.: Algebraic multigrid (AMG). In: McCormick, S. (ed.) Multigrid Methods, Frontiers in Applied Mathematics, vol. 5. SIAM, Philadelphia (1986)

    Google Scholar 

  19. Schwab, C., Todor, R.A.: Sparse finite elements for elliptic problems with stochastic loading. Numer. Math. 95(4), 707–734 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schwab, C., Todor, R.A.: Sparse finite elements for stochastic elliptic problems: higher order moments. Computing 71(1), 43–63 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stüben, K.: A review of algebraic multigrid. J. Comput. Appl. Math. 128(1–2), 281–309 (2001). Numerical Analysis 2000. Vol. VII: Partial Differential Equations

    Article  MathSciNet  MATH  Google Scholar 

  22. Trottenberg, U., Schuller, A.: Multigrid. Academic Press Inc, Orlando (2001)

    MATH  Google Scholar 

  23. Yang, U.M.: On long-range interpolation operators for aggressive coarsening. Numer. Linear Algebr. Appl. 17(2–3), 453–472 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Zaspel, P.: Subspace correction methods in algebraic multi-level frames. Linear Algebr. Appl. 488, 505–521 (2016)

  25. Zeiser, A.: Fast matrix-vector multiplication in the sparse-grid Galerkin method. SIAM J. Sci. Comput. 47(3), 328–346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Zaspel.

Additional information

This work is funded by the Swiss National Science Foundation (SNF) under Project Number \(407540\_167186\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harbrecht, H., Zaspel, P. On the Algebraic Construction of Sparse Multilevel Approximations of Elliptic Tensor Product Problems. J Sci Comput 78, 1272–1290 (2019). https://doi.org/10.1007/s10915-018-0807-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0807-6

Keywords

Mathematics Subject Classification

Navigation