Skip to main content
Log in

Dispersion Analysis of HDG Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This work presents a dispersion analysis of the Hybrid Discontinuous Galerkin (HDG) method. Considering the Helmholtz system, we quantify the discrepancies between the exact and discrete wavenumbers. In particular, we obtain an analytic expansion for the wavenumber error for the lowest order Single Face HDG (SFH) method. The expansion shows that the SFH method exhibits convergence rates of the wavenumber errors comparable to that of the mixed hybrid Raviart–Thomas method. In addition, we observe the same behavior for the higher order cases in numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ainsworth, M.: Discrete dispersion relation for \(hp\)-version finite element approximation at high wave number. SIAM J. Numer. Anal. 42(2), 553–575 (2004)

    Article  MathSciNet  Google Scholar 

  2. Ainsworth, M.: Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods. J. Comput. Phys. 198(1), 106–130 (2004)

    Article  MathSciNet  Google Scholar 

  3. Ainsworth, M., Monk, P., Muniz, W.: Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second order wave equation. J. Sci. Comput. 27(1–3), 5–40 (2006)

    Article  MathSciNet  Google Scholar 

  4. Babuška, I.M., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM J. Numer. Anal. 34(6), 2392–2423 (1997)

    Article  MathSciNet  Google Scholar 

  5. Chung, E., Cockburn, B., Fu, G.: The staggered DG method is the limit of a hybridizable DG method. SIAM J. Numer. Anal. 52(2), 915–932 (2014)

    Article  MathSciNet  Google Scholar 

  6. Chung, E., Engquist, B.: Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions. SIAM J. Numer. Anal. 47, 3820–3848 (2009)

    Article  MathSciNet  Google Scholar 

  7. Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77(264), 1887–1916 (2008)

    Article  MathSciNet  Google Scholar 

  8. Cockburn, B., Gopalakrishnan, J., Lazaron, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  Google Scholar 

  9. Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)

    Article  MathSciNet  Google Scholar 

  10. Cui, J., Zhang, W.: An analysis of HDG methods for the Helmholtz equation. IMA J. Numer. Anal. 34(1), 279–295 (2014)

    Article  MathSciNet  Google Scholar 

  11. De Basabe, J.D., Sen, M.K., Wheeler, M.F.: The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion. Geophys. J. Int. 175(1), 83–93 (2014)

    Article  Google Scholar 

  12. Deraemaeker, A., Babuška, I.M., Bouillard, P.: Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions. Int. J. Numer. Meth. Eng. 46(4), 471–499 (1999)

    Article  Google Scholar 

  13. Giorgiani, G., Fernández-Méndez, S., Huerta, A.: Hybridizable discontinuous Galerkin p-adaptivity for wave propagation problems. Int. J. Numer. Meth. Fluids 72(12), 1244–1262 (2013)

    Article  MathSciNet  Google Scholar 

  14. Gittelson, C.J., Hiptmair, R.: Dispersion analysis of plane wave discontinuous Galerkin methods. Int. J. Numer. Meth. Eng. 98(5), 313–323 (2014)

    Article  MathSciNet  Google Scholar 

  15. Gopalakrishnan, J., Lanteri, S., Olivares, N., Perrusel, R.: Stabilization in relation to wavenumber in HDG methods. Adv. Model. Simul. Eng. Sci. 2(1), 13 (2015)

    Article  Google Scholar 

  16. Gopalakrishnan, J., Muga, I., Olivares, N.: Dispersive and dissipative errors in the DPG method with scaled norms for the Helmholtz equation. SIAM J. Sci. Comput. 36(1), A20–A39 (2014)

    Article  MathSciNet  Google Scholar 

  17. Griesmaier, R., Monk, P.: Error analysis for a hybridizable discontinuous Galerkin method for the Helmholtz equation. J. Sci. Comput. 49(2), 291–310 (2011)

    Article  MathSciNet  Google Scholar 

  18. Hu, F.Q., Hussaini, M., Rasetarinera, P.: An analysis of the discontinuous Galerkin method for wave propagation problems. J. Comput. Phys. 151(2), 921–946 (1999)

    Article  Google Scholar 

  19. Kirby, R.C.: Singularity-free evaluation of collapsed-coordinate orthogonal polynomials. ACM Trans. Math. Softw. 37, 5 (2010)

    Article  MathSciNet  Google Scholar 

  20. Sherwin, S.: Dispersion Analysis of the Continuous and Discontinuous Galerkin Formulations, pp. 426–431. Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

    MATH  Google Scholar 

Download references

Acknowledgements

This paper is the outgrowth of a suggestion from Prof. Bernardo Cockburn to go beyond the standard HDG method while comparing dispersion relations. On this occasion for celebrating Prof. Cockburn’s contributions, the authors would like to place on record their deep appreciation for his tireless efforts to nurture the mathematical community of researchers in discontinuous Galerkin methods over the years. This work was initiated while the student author F. Vargas was visiting Portland State University, thanks to the support from CONICYT, Chile. M. Solano was partially supported by Conicyt-Chile through Fondecyt project No. 1160320 and project AFB170001 of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Vargas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopalakrishnan, J., Solano, M. & Vargas, F. Dispersion Analysis of HDG Methods. J Sci Comput 77, 1703–1735 (2018). https://doi.org/10.1007/s10915-018-0781-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0781-z

Keywords

Navigation