Skip to main content
Log in

Finite Element Methods for a System of Dispersive Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The present study is concerned with the numerical approximation of periodic solutions of systems of Korteweg–de Vries type, coupled through their nonlinear terms. We construct, analyze and numerically validate two types of schemes that differ in their treatment of the third derivatives appearing in the system. One approach preserves a certain important invariant of the system, up to round-off error, while the other, somewhat more standard method introduces a measure of dissipation. For both methods, we prove convergence of a semi-discrete approximation and highlight differences in the basic assumptions required for each. Numerical experiments are also conducted with the aim of ascertaining the accuracy of the two schemes when integrations are made over long time intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. The Applied Mathematics Series, vol. 55. National Bureau of Standards, Gaithersburg (1965)

    Google Scholar 

  2. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  3. Ash, J.M., Cohen, J., Wang, G.: On strongly interacting internal solitary waves. J. Fourier Anal. Appl. 2, 507–517 (1996)

    Article  MathSciNet  Google Scholar 

  4. Baker, G.A., Dougalis, V.A., Karakashian, O.A.: Convergence of Galerkin approximations for the Korteweg–de Vries equation. Math. Comput. 40, 419–433 (1983)

    Article  MathSciNet  Google Scholar 

  5. Bona, J.L.: Convergence of periodic wave trains in the limit of large wavelength. Appl. Sci. Res. 37, 21–30 (1981)

    Article  MathSciNet  Google Scholar 

  6. Bona, J.L., Chen, H., Karakashian, O.A.: Stability of solitary-wave solutions of systems of dispersive equations. Appl. Math. Optim. 75, 27–53 (2017)

    Article  MathSciNet  Google Scholar 

  7. Bona, J.L., Chen, H., Karakashian, O.A.: Instability of solitary-wave solutions of systems of coupled KdV equations: theory and numerical results, Preprint

  8. Bona, J.L., Chen, H., Karakashian, O.A., Xing, Y.: Conservative, discontinuous-Galerkin methods for the generalized Korteweg–de Vries equation. Math. Comput. 82, 1401–1432 (2013)

    Article  MathSciNet  Google Scholar 

  9. Bona, J.L., Chen, M., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: part I. Derivation and linear theory. J. Nonlinear Sci. 12, 283–318 (2002)

    Article  MathSciNet  Google Scholar 

  10. Bona, J.L., Chen, M., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: Part II. Nonlinear theory. Nonlinearity 17, 925–952 (2004)

    Article  MathSciNet  Google Scholar 

  11. Bona, J.L., Cohen, J., Wang, G.: Global well-posedness of a system of KdV-type with coupled quadratic nonlinearities. Nagoya Math. J. 215, 67–149 (2014)

    Article  MathSciNet  Google Scholar 

  12. Bona, J.L., Dougalis, V.A., Mitsotakis, D.: Numerical solutions of KdV–KdV systems of Boussinesq equations. I. The numerical scheme and generalized solitary waves. Math. Comput. Simul. 74, 214–226 (2007)

    Article  MathSciNet  Google Scholar 

  13. Bona, J.L., Dougalis, V.A., Mitsotakis, D.: Numerical solutions of KdV–KdV systems of Boussinesq equations. II. Evolution of radiating solitary waves. Nonlinearity 21, 2825–2848 (2008)

    Article  MathSciNet  Google Scholar 

  14. Bona, J.L., Smith, R.: The initial-value problem for the Korteweg–de Vries equation. Philos. Trans. R. Soc. Lond. Ser. A 278, 555–601 (1975)

    Article  MathSciNet  Google Scholar 

  15. Bona, J.L., Soyeur, A.: On the stability of solitary-wave solutions of model equations for long waves. J. Nonlinear Sci. 4, 449–470 (1994)

    Article  MathSciNet  Google Scholar 

  16. Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2002)

    Book  Google Scholar 

  17. Chen, H.: Long-period limit of nonlinear dispersive waves. Differ. Integral Equ. 19, 463–480 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1980)

    MATH  Google Scholar 

  19. Cheng, Y., Shu, C.-W.: A discontinuous finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77, 699–730 (2008)

    Article  MathSciNet  Google Scholar 

  20. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Sharp global well-posedness of KdV and modified KdV on \({\mathbb{R}}\) and \({\mathbb{T}}\). J. Am. Math. Soc. 16, 705–749 (2003)

    Article  MathSciNet  Google Scholar 

  21. Dekker, K., Verwer, J.G.: Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations. North Holland, Amsterdam (1984)

    MATH  Google Scholar 

  22. Gear, J.A., Grimshaw, R.: Weak and strong interactions between internal solitary waves. Stud. Appl. Math. 65, 235–258 (1984)

    Article  MathSciNet  Google Scholar 

  23. Hakkaev, S.: Stability and instability of solitary wave solutions of a nonlinear dispersive system of Benjamin–Bona–Mahony type. Serdica Math. J. 29, 337–354 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Kappeler, T., Topalov, P.: Global well-posedness of KdV in \(H^{-1}({\mathbb{T}}, {\mathbb{R}})\). Duke Math. J. 135, 327–360 (2006)

    Article  MathSciNet  Google Scholar 

  25. Karakashian, O.A., Makridakis, C.: A posteriori error estimates for the generalized Korteweg–de Vries equation. Math. Comput. 84, 1145–1167 (2015)

    Article  Google Scholar 

  26. Karakashian, O.A., Xing, Y.: A posteriori error estimates for the Generalized Korteweg–de Vries equation. Commun. Comput. Phys. 20, 250–278 (2016)

    Article  MathSciNet  Google Scholar 

  27. Liu, H., Yi, N.: A Hamiltonian preserving discontinuous Galerkin method for the generalized Korteweg–de Vries equation. J. Comput. Phys. 321, 776–796 (2016)

    Article  MathSciNet  Google Scholar 

  28. Majda, A., Biello, J.: The nonlinear interaction of barotropic and equatorial baroclinic Rossby Waves. J. Atmos. Sci. 60, 1809–1821 (2003)

    Article  MathSciNet  Google Scholar 

  29. Miura, R.M.: The Korteweg–de Vries equation: a survey of results. SIAM Rev. 18, 412–459 (1976)

    Article  MathSciNet  Google Scholar 

  30. Pego, R.L., Weinstein, M.I.: Asymptotic stability of solitary waves. Commun. Math. Phys. 164, 305–349 (1994)

    Article  MathSciNet  Google Scholar 

  31. Wahlbin, L.B.: Dissipative Galerkin method for the numerical solution of first order hyperbolic equations. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, Proceedings of a Symposium at the Mathematics Research Center, the University of Wisconsin Madison, pp. 147-169. Academic Press (1974)

  32. Winther, R.: A conservative finite element method for the Korteweg–de Vries equation. Math. Comput. 34, 23–43 (1980)

    MathSciNet  MATH  Google Scholar 

  33. Xu, Y., Shu, C.-W.: Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection–diffusion and KdV equations. Comput. Methods Appl. Mech. Eng. 196, 3805–3822 (2007)

    Article  MathSciNet  Google Scholar 

  34. Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of OK and MW was partially supported by NSF Grant DMS-1620288. HC and JB are grateful for hospitality and support from UT Knoxville during visits there. HC and JB also acknowledge support and fine working conditions at King Abdullah University of Science and Technology in Saudi Arabia, National Taiwan University’s National Center for Theoretical Sciences and the Ulsan National Institute of Science and Technology in South Korea during parts of the development of this project. HC also acknowledges a visiting professorship at the Université de Paris 12 during the initial stages of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ohannes Karakashian.

Additional information

Dedicated to Professor Bernardo Cockburn on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bona, J.L., Chen, H., Karakashian, O. et al. Finite Element Methods for a System of Dispersive Equations. J Sci Comput 77, 1371–1401 (2018). https://doi.org/10.1007/s10915-018-0767-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0767-x

Keywords

Mathematics Subject Classification

Navigation