Skip to main content
Log in

Numerical Simulation of Stefan Problem Coupled with Mass Transport in a Binary System Through XFEM/Level Set Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper deals with the application of the extended finite element method to simulate the phase change phenomenon in a binary system while considering the interaction with the mass transport of chemical species. To this end, the thermal conduction equation with the Stefan condition and the mass diffusion equation are solved to depict the temperature and solute concentration distributions, respectively. In dealing with the heat transfer problem with phase change, the temperature field is weakly enriched using the corrected abs-enrichment scheme to avoid the blending element problem. The melting temperature imposed by the penalty method at the solid–liquid interface is solute concentration dependent. On the other hand in dealing with the mass transport problem, due to the strong discontinuity in the concentration field at the interface, the sign-enrichment scheme is used. A constant separating out concentration is enforced on the solid side of the interface also by the penalty method, while a mass flux is naturally applied on the liquid side. The phase interface is captured implicitly by the level set method, which is applied on the same fixed finite element mesh. The robustness and the accuracy of the model are demonstrated through numerical case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45(5), 601–620 (1999)

    Article  MATH  Google Scholar 

  2. Bernauer, M.K., Herzog, R.: Implementation of an X-FEM solver for the classical two-phase Stefan problem. J. Sci. Comput. 52(2), 271–293 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boettinger, W.J., Warren, J.A., Beckermann, C., Karma, A.: Phase-field simulation of solidification 1. Annu. Rev. Mater. Res. 32(1), 163–194 (2002)

    Article  Google Scholar 

  4. Chen, S., Merriman, B., Osher, S., Smereka, P.: A simple level set method for solving Stefan problems. J. Comput. Phys. 135(1), 8–29 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng, K.W., Fries, T.P.: Higher-order XFEM for curved strong and weak discontinuities. Int. J. Numer. Methods Eng. 82(5), 564–590 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Chessa, J., Smolinski, P., Belytschko, T.: The extended finite element method (XFEM) for solidification problems. Int. J. Numer. Methods Eng. 53(8), 1959–1977 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chessa, J., Wang, H., BelytschkoM, T.: On the construction of blending elements for local partition of unity enriched finite elements. Int. J. Numer. Methods Eng. 57, 1015–1038 (2003)

    Article  MATH  Google Scholar 

  8. Echebarria, B., Folch, R., Karma, A., Plapp, M.: Quantitative phase-field model of alloy solidification. Phys. Rev. E 70(6), 061,604 (2004)

    Article  Google Scholar 

  9. Fries, T.P.: A corrected XFEM approximation without problems in blending elements. Int. J. Numer. Methods Eng. 75(5), 503–532 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fries, T.P., Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84(3), 253–304 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Gibou, F., Fedkiw, R., Caflisch, R., Osher, S.: A level set approach for the numerical simulation of dendritic growth. J. Sci. Comput. 19(1), 183–199 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gupta, S.C.: The Classical Stefan Problem: Basic Concepts, Modelling and Analysis. Elsevier, London (2003)

    MATH  Google Scholar 

  13. Hu, H., Argyropoulos, S.A.: Mathematical modelling of solidification and melting: a review. Model. Simul. Mater. Sci. Eng. 4(4), 371–396 (1996)

    Article  Google Scholar 

  14. Javierre, E., Vuik, C., Vermolen, F.J., van der Zwaag, S.: A comparison of numerical models for one-dimensional Stefan problems. J. Comput. Appl. Math. 192(2), 445–459 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ji, H., Dolbow, J.E.: On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method. Int. J. Numer. Methods Eng. 61(14), 2508–2535 (2004)

    Article  MATH  Google Scholar 

  16. Marceau, D., Goulet, P., Richard, D., Fafard, M.: FESh++, une nouvelle approche orientée objet pour la simulation par éléments finis des problèmes multiphysiques. In: Actes du septièmes colloque en calcul des structures, Giens, France 2, 303–308 (2005)

  17. Martin, D., Chaouki, H., Robert, J.L., Fafard, M., Ziegler, D.: A XFEM Lagrange multiplier technique for Stefan problems. Front. Heat Mass Transf. 7(1) (2016)

  18. Merle, R., Dolbow, J.: Solving thermal and phase change problems with the extended finite element method. Comput. Mech. 28(5), 339–350 (2002)

    Article  MATH  Google Scholar 

  19. Moës, N., Cloirec, M., Cartraud, P., Remacle, J.F.: A computational approach to handle complex microstructure geometries. Comput. Methods Appl. Mech. Eng. 192(28), 3163–3177 (2003)

    Article  MATH  Google Scholar 

  20. Osher, S., Fedkiw, R.P.: Level set methods: an overview and some recent results. J. Comput. Phys. 169(2), 463–502 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Povich, T.J., Dawson, C.N., Farthing, M.W., Kees, C.E.: Finite element methods for variable density flow and solute transport. Comput. Geosci. 17(3), 529–549 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ramirez, J.C., Beckermann, C., Karma, A., Diepers, H.J.: Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion. Phys. Rev. E 69(5), 051,607 (2004)

    Article  Google Scholar 

  23. Rubinsky, B.: Solidification processes in saline solutions. J. Cryst. Growth 62(3), 513–522 (1983)

    Article  Google Scholar 

  24. Salvatori, L., Tosi, N.: Stefan problem through extended finite elements: review and further investigations. Algorithms 2(3), 1177–1220 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Segal, G., Vuik, K., Vermolen, F.: A conserving discretization for the free boundary in a two-dimensional Stefan problem. J. Comput. Phys. 141(1), 1–21 (1998)

    Article  MATH  Google Scholar 

  26. Stapór, P.: The XFEM for nonlinear thermal and phase change problems. Int. J. Numer. Methods Heat 25(2), 400–421 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stefan, J.: Über die theorie der eisbildung, insbesondere über die eisbildung im polarmeere. Ann. Phys. 278(2), 269–286 (1891)

    Article  MATH  Google Scholar 

  28. Theillard, M., Gibou, F., Pollock, T.: A sharp computational method for the simulation of the solidification of binary alloys. J. Sci. Comput. 63(2), 330–354 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tsai, H.L., Rubinsky, B.: A front tracking finite element study on change of phase interface stability during solidification processes in solutions. J. Cryst. Growth 70(1–2), 56–63 (1984)

    Article  Google Scholar 

  30. Voller, V.R., Cross, M., Markatos, N.C.: An enthalpy method for convection/diffusion phase change. Int. J. Numer. Methods Eng. 24(1), 271–284 (1987)

    Article  MATH  Google Scholar 

  31. Wang, Q., Li, B., Fafard, M.: Effect of anode change on heat transfer and magneto-hydrodynamic flow in aluminum reduction cell. JOM 68(2), 610–622 (2016)

    Article  Google Scholar 

  32. Wollhöver, K., Körber, C., Scheiwe, M.W., Hartmann, U.: Unidirectional freezing of binary aqueous solutions: an analysis of transient diffusion of heat and mass. Int. J. Heat Mass Transf. 28(4), 761–769 (1985)

    Article  MATH  Google Scholar 

  33. Yang, Y., Udaykumar, H.S.: Sharp interface Cartesian grid method III: solidification of pure materials and binary solutions. J. Comput. Phys. 210(1), 55–74 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zabaras, N., Ganapathysubramanian, B., Tan, L.: Modelling dendritic solidification with melt convection using the extended finite element method. J. Comput. Phys. 218(1), 200–227 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Li.

Additional information

The authors would like to acknowledge the National Sciences and Engineering Research Council of Canada (NSERC) funding NSERC Discovery Grant (No. 36518) for supporting the present research. A part of the research presented in this paper was financed by the Fonds de Recherche du Qubec-Nature et Technologie (FRQNT) by the intermediary of the Aluminium Research Centre—REGAL. The first author also acknowledges the financial support from the Chinese Scholarship Council (CSC).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Chaouki, H., Robert, JL. et al. Numerical Simulation of Stefan Problem Coupled with Mass Transport in a Binary System Through XFEM/Level Set Method. J Sci Comput 78, 145–166 (2019). https://doi.org/10.1007/s10915-018-0759-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0759-x

Keywords

Mathematics Subject Classification

Navigation