A Robust Solver for a Mixed Finite Element Method for the Cahn–Hilliard Equation

  • Susanne C. Brenner
  • Amanda E. Diegel
  • Li-Yeng Sung
Article
  • 11 Downloads

Abstract

We develop a robust solver for a mixed finite element convex splitting scheme for the Cahn–Hilliard equation. The key ingredient of the solver is a preconditioned minimal residual algorithm (with a multigrid preconditioner) whose performance is independent of the spacial mesh size and the time step size for a given interfacial width parameter. The dependence on the interfacial width parameter is also mild.

Keywords

Cahn–Hilliard equation Convex splitting Mixed finite element methods MINRES Block diagonal preconditioner Multigrid 

Notes

Acknowledgements

Portions of this research were conducted with high performance computational resources provided by Louisiana State University (http://www.hpc.lsu.edu). We would also like to thank Shawn Walker for his valuable advice regarding the FELICITY/C++ Toolbox for MATLAB.

References

  1. 1.
    Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 15. Arch. Numer. Soft. 3, 9–23 (2015)Google Scholar
  2. 2.
    Axelsson, O., Boyanova, P., Kronbichler, M., Neytcheva, M., Wu, X.: Numerical and computational efficiency of solvers for two-phase problems. Comput. Math. Appl. 65, 301–314 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Barrett, J.W., Nurnberg, R., Styles, V.: Finite element approximation of a phase field model for void electromigration. SIAM J. Numer. Anal. 42(2), 738–772 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bänsch, E., Morin, P., Nochetto, R.H.: Preconditioning a class of fourth order problems by operator splitting. Numer. Math. 118, 197–228 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Boyanova, P., Do-Quang, M., Neytcheva, M.: Efficient preconditioners for large scale binary Cahn–Hilliard models. Comput. Methods Appl. Math. 12(1), 1–22 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)CrossRefMATHGoogle Scholar
  8. 8.
    Cahn, J.W.: On spinodal decomposition. Acta Metall. 9, 795 (1961)CrossRefGoogle Scholar
  9. 9.
    Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258 (1958)CrossRefGoogle Scholar
  10. 10.
    Ceniceros, H.D., Roma, A.M.: A nonstiff, adaptive mesh refinement-based method for the Cahn–Hilliard equation. J. Comput. Phys. 225, 1849–1862 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Choksi, R., Maras, M., Williams, J.F.: 2D phase diagram for minimizers of a Cahn–Hilliard functional with long-range interactions. SIAM J. Appl. Dyn. Sys. 10(4), 1344–1362 (2011)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Diegel, A., Feng, X., Wise, S.M.: Analysis of a mixed finite element method for a Cahn–Hilliard–Darcy–Stokes system. SIAM J. Numer. Anal. 53(1), 127–152 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Diegel, A., Wang, C., Wise, S.M.: Stability and convergence of a second-order mixed finite element method for the Cahn–Hilliard equation. IMA J. Numer. Anal. 36, 1867–1897 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Du, Q., Li, M., Liu, C.: Analysis of a phase field Navier–Stokes vesicle–fluid interaction model. Discrete Contin. Dyn. Syst. Ser. B 8(3), 539 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1999)CrossRefMATHGoogle Scholar
  16. 16.
    Elliott, C.M., Zheng, S.: On the Cahn–Hilliard equation. Arch. Ration. Mech. Anal. 96, 339–357 (1986)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, 2nd edn. Oxford University Press, Oxford (2014)CrossRefMATHGoogle Scholar
  18. 18.
    Eyre, D.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Bullard, J.W., Kalia, R., Stoneham, M., Chen, L.Q. (eds.) Computational and Mathematical Models of Microstructural Evolution, vol. 53, pp. 1686–1712. Materials Research Society, Warrendale (1998)Google Scholar
  19. 19.
    Feng, X.: Fully discrete finite element approximations of the Navier–Stokes–Cahn–Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44, 1049–1072 (2006)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Greenbaum, A.: Iterative Methods for Solving Linear Systems. SIAM, Philadelphia (1997)CrossRefMATHGoogle Scholar
  21. 21.
    Hackbusch, W.: Multi-grid Methods and Applications. Springer, Berlin (1985)CrossRefMATHGoogle Scholar
  22. 22.
    Kay, D., Welford, R.: A multigrid finite element solver for the Cahn–Hilliard equation. J. Comput. Phys. 212, 288–304 (2006)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kim, J.: A numerical method for the Cahn–Hilliard equation with a variable mobility. Commun. Nonlinear Sci. Numer. Simul. 12, 1560–1571 (2007)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193, 511–543 (2004)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Lee, C., Jeong, D., Shin, J., Li, Y., Kim, J.: A fourth-order spatial accurate and practically stable compact scheme for the Cahn–Hilliard equation. Physics A 409, 17–28 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lee, D., Huh, J., Jeong, D., Shin, J., Yun, A., Kim, J.: Physical, mathematical, and numerical derivations of the Cahn–Hilliard equation. Comput. Mater. Sci. 81, 216–225 (2014)CrossRefGoogle Scholar
  27. 27.
    Lee, H.G., Lowengrub, J.S., Goodman, J.: Modeling pinchoff and reconnection in a Hele–Shaw cell. I. The models and their calibration. Phys. Fluids 14, 492–513 (2002)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Mardal, K.-A., Winther, R.: Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra Appl. 18, 1–40 (2011)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Shin, J., Kim, S., Lee, D., Kim, J.: A parallel multigrid method of the Cahn–Hilliard equation. Comput. Mater. Sci. 71, 89–96 (2013)CrossRefGoogle Scholar
  30. 30.
    Stogner, R.H., Carey, G.F., Murray, B.T.: Approximation of Cahn–Hilliard diffuse interface models using parallel adaptive mesh refinement and coarsening with C1 elements. Int. J. Numer. Methods Eng. 76, 636–661 (2008)CrossRefMATHGoogle Scholar
  31. 31.
    Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988)CrossRefMATHGoogle Scholar
  32. 32.
    Tierra, G., Guillén-González, F.: Numerical methods for solving the Cahn–Hilliard equation and its applicability to related energy-based models. Arch. Comput. Methods Eng. 22, 269–289 (2015)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, San Diego (2001)MATHGoogle Scholar
  34. 34.
    van Teeffelen, S., Backofen, R., Voigt, A., Löwen, H.: Derivation of the phase-field-crystal model for colloidal solidification. Phys. Rev. E 79, 051404 (2009)CrossRefGoogle Scholar
  35. 35.
    Walker, S.W.: FELICITY: finite element implementation and computational interface tool for you. http://www.mathworks.com/matlabcentral/fileexchange/31141-felicity
  36. 36.
    Wang, W., Chen, L., Zhou, J.: Postprocessing mixed finite element methods for solving Cahn–Hilliard equation: methods and error analysis. J. Sci. Comput. 67, 724–746 (2016)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Wise, S.M.: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn–Hilliard–Hele–Shaw system of equations. J. Sci. Comput. 44, 38–68 (2010)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Wise, S.M., Kim, J., Lowengrub, J.: Solving the regularized, strongly anisotropic Cahn–Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226, 414–446 (2007)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Zulehner, W.: Nonstandard norms and robust estimates for saddle point problems. SIAM J. Matrix Anal. Appl. 32(2), 536–560 (2011)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Zheng, B., Chen, L.-P., Hu, X., Chen, L., Nochetto, R.H., Xu, J.: Fast multilevel solvers for a class of discrete fourth order parabolic problems. J. Sci. Comput. 69, 201–226 (2016)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Zhou, J., Chen, L., Huang, Y., Wang, W.: An efficient two-grid scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 17, 127–145 (2015)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Susanne C. Brenner
    • 1
  • Amanda E. Diegel
    • 1
  • Li-Yeng Sung
    • 1
  1. 1.Department of Mathematics and Center for Computation and TechnologyLouisiana State UniversityBaton RougeUSA

Personalised recommendations