Skip to main content

A Closed-Form Formula for the RBF-Based Approximation of the Laplace–Beltrami Operator


In this paper we present a method that uses radial basis functions to approximate the Laplace–Beltrami operator that allows to solve numerically diffusion (and reaction–diffusion) equations on smooth, closed surfaces embedded in \(\mathbb {R}^3\). The novelty of the method is in a closed-form formula for the Laplace–Beltrami operator derived in the paper, which involve the normal vector and the curvature at a set of points on the surface of interest. An advantage of the proposed method is that it does not rely on the explicit knowledge of the surface, which can be simply defined by a set of scattered nodes. In that case, the surface is represented by a level set function from which we can compute the needed normal vectors and the curvature. The formula for the Laplace–Beltrami operator is exact for radial basis functions and it also depends on the first and second derivatives of these functions at the scattered nodes that define the surface. We analyze the converge of the method and we present numerical simulations that show its performance. We include an application that arises in cardiology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Alvarez, D., Alonso-Atienza, F., Rojo-Alvarez, J.L., Garcia-Alberola, A., Moscoso, M.: Shape reconstruction of cardiac ischemia from non-contact intracardiac recordings: a model study. Math. Comput. Model. 55, 1770–1781 (2012)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Ayton, G.S., McWhirter, J.L., McMurty, P., Voth, G.A.: Coupling field theory with continuum mechanics: a simulation of domain formation in giant unilamellar vesicles. Biophys. J. 88, 3855–3869 (2005)

    Article  Google Scholar 

  3. 3.

    Barreira, R., Elliott, C.M., Madzvamuse, A.: The surface finite element method for pattern formation on evolving biological surfaces. J. Math. Biol. 63, 1095–1119 (2011)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bayona, V., Moscoso, M., Carretero, M., Kindelan, M.: RBF-FD formulas and convergence properties. J. Comput. Phys. 229, 8281–8295 (2010)

    Article  Google Scholar 

  5. 5.

    Bertalmío, M., Bertozzi, A., Sapiro, G.: Navier–Stokes, fluid dynamics, and image and video inpainting. In: Proceedings of IEEE-CVPR, pp. 355–362 (2001)

  6. 6.

    Buhmann, M.: Radial Basis Functions. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  7. 7.

    Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans. T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques (SIGGRAPH ’01), pp. 67–76. ACM, New York (2001).

  8. 8.

    Chavez, C., Zemzemi, N., Coudiere, Y., Alonso-Atienza, F., Alvarez, D.: Inverse Problem of Electrocardiography: Estimating the Location of Cardiac Ischemia in a 3D Realistic Geometry. Lecture Notes in Computer Science, vol. 9126. Springer, Cham (2015)

    Google Scholar 

  9. 9.

    Driscoll, T.A., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43, 413–422 (2002)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289–396 (2013)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Floater, M., Hormann, K.: Surface parameterization: a tutorial and survey. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds.) Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer, Berlin (2005)

    Chapter  Google Scholar 

  12. 12.

    Flyer, N., Wright, G.B.: Transport schemes on a sphere using radial basis functions. J. Comput. Phys. 226, 1059–1084 (2007)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Flyer, N., Wright, G.B.: A radial basis function method for the shallow water equations on a sphere. Proc. R. Soc. A 465, 1949–1976 (2009)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30, 60–80 (2007)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Fonberg, B., Flyer, N.: A primer on radial basis functions with applications to geosciences. In: CBMS-NSF Regional Conference Series in Applied Mathematics (2015)

  16. 16.

    Fuselier, E.J., Wright, G.B.: Scattered data on embedded submanifolds with restricted positive definite kernel: Sobolev error estimates. SIAM J. Numer. Anal. 50, 1753–1776 (2012)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Fuselier, E.J., Wright, G.B.: A high-order kernel method for diffusion and reaction–diffusion equations on surfaces. J. Sci. Comput. 56, 535–565 (2013)

    MathSciNet  Article  Google Scholar 

  18. 18.

    González-Rodríguez, P., Bayona, V.-, Moscoso, M., Kindelan, M.: Laurent series based RBF-FD method to avoid ill-conditioning. Eng. Anal. Bound. Elem. 52, 24–31 (2015)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Greer, J.B.: An improvement of a recent Eulerian method for solving PDEs on general geometries. J. Sci. Comput. 29, 321–352 (2006)

    MathSciNet  Article  Google Scholar 

  20. 20.

    James, A.J., Lowengrub, J.: A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. J. Comput. Phys. 201, 685–722 (2004)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Kansa, E.J.: Multiquadrics, a scattered data approximation scheme with applications to computational fluid dynamics. I. Surface approximations and partial derivatives estimates. Comput. Math. Appl. 19, 127–145 (1990)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Kansa, E.J.: Multiquadrics, a scattered data approximation scheme with applications to computational fluid dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19, 147–161 (1990)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Kindelan, M., Moscoso, M., González-Rodríguez, P.: Radial basis function interpolation in the limit of increasingly flat basis functions. J. Comput. Phys. 307, 225–242 (2016)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Macdonald, C.B., Ruuth, S.J.: The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM J. Sci. Comput. 31, 4330–4350 (2009)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Memoli, F., Sapiro, G., Thompson, P.: Implicit brain imaging. Hum. Brain Mapp. 23, 179–188 (2004)

    Google Scholar 

  26. 26.

    Mitchell, C.C., Shaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65, 767–793 (2003)

    Article  Google Scholar 

  27. 27.

    Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx. 2, 11–22 (1986)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Myers, T.G., Charpin, J.P.F.: A mathematical model for atmospheric ice accretion and water flow on a cold surface. Int. J. Heat Mass Trans. 47, 5483–5500 (2004)

    Article  Google Scholar 

  29. 29.

    Piret, C.: The orthogonal gradients method: a radial basis functions method for solving partial differential equations on arbitrary surfaces. J. Comput. Phys. 231, 4662–4675 (2012)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Ruuth, S.J., Merriman, B.: A simple embedding method for solving partial differential equations on surfaces. J. Comput. Phys. 227, 1943–1961 (2008)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Schaback, R.: Multivariate interpolation by polynomials and radial basis functions. Constr. Approx. 21, 293–317 (2005)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Shankar, V., Wright, G.B., Kirby, R.M., Fogelson, A.L.: A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction–diffusion equations on surfaces. J. Sci. Comput. 63, 745–768 (2016)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Shu, C., Ding, H., Yeo, K.S.: Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 192, 941–954 (2003)

    Article  Google Scholar 

  34. 34.

    Stam, J.: Flows on surfaces of arbitrary topology. ACM Trans. Graph. 22, 724–731 (2003)

    Article  Google Scholar 

  35. 35.

    Tang, P., Qiu, F., Zhang, H., Yang, Y.: Phase separation patterns for diblock copolymers on spherical surfaces: a finite volume method. Phys. Rev. E 72, 016710 (2005)

    Article  Google Scholar 

  36. 36.

    Tolstykh, A.I., Shirobokov, D.A.: On using radial basis functions in a “finite difference mode” with applications to elasticity problems. Comput. Mech. 33, 68–79 (2003)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Wright, G.B.: Radial basis function interpolation: numerical and analytical developments. Ph.D. thesis, University of Colorado, Boulder (2003)

  38. 38.

    Wright, G.B., Flyer, N., Yuen, D.A.: A hybrid radial basis function-pseudospectral method for thermal convection in a 3D spherical shell. Geophys. Geochem. Geosyst. 11, Q07003 (2010)

    Article  Google Scholar 

  39. 39.

    Womersley, R.S., Sloan, I.: How good can polynomial interpolation on the sphere be? Adv. Comput. Math. 14, 195–226 (2001)

    MathSciNet  Article  Google Scholar 

Download references


This work has been supported by Spanish MICINN Grant FIS2016-77892-R. We thank the anonymous reviewer for his or her careful reading of our manuscript and his or her many insightful comments and suggestions.

Author information



Corresponding author

Correspondence to Diego Álvarez.

Appendix A: Laplace–Beltrami Operator of an RBF on the Unit Sphere

Appendix A: Laplace–Beltrami Operator of an RBF on the Unit Sphere

We show that the expression for the Laplace–Beltrami operator of an RBF defined on a general surface (19) reduces to (20), when the given nodes \(\{\mathbf {x}_i\}\), \(i=1,\ldots ,N\), are located on the unit sphere.

Let \(\varPsi (\mathbf {x})=x^2+y^2+z^2-1\) be the function whose zero level set defines the unit sphere

$$\begin{aligned} \mathbb {S}^2=\{ \mathbf {x}\in \mathcal {R}^3\,:\,\,\varPsi (\mathbf {x})=0 \} \end{aligned}$$

implicitly. Then, \(\varvec{\nabla } \varPsi (\mathbf {x})=2\mathbf {x}\), so using (25) we obtain that \(\mathbf {n}(\mathbf {x})=\mathbf {x}\). Similarly, we find that \(\varDelta \varPsi (\mathbf {x})=6\) and \(\text {D}_{\mathbf {n}}\left( \varvec{\nabla } \varPsi (\mathbf {x})\right) = (\mathbf {x}\cdot \varvec{\nabla })\,2\mathbf {x}=2\mathbf {x}\), so the curvature is just \(\kappa (\mathbf {x})=2\). Then, using (19) it follows that

$$\begin{aligned} \varDelta _{\mathbb {S}^2}\phi (r_i(\mathbf {x}))= \left( 1+\frac{(\mathbf {x}\cdot \mathbf{{r}}_i)^2}{r_i^2} -2\,\mathbf {x}\cdot \mathbf{{r}}_i\right) \frac{1}{r_{i}}\displaystyle \frac{\text {d}\phi (r_i)}{\text {d}r_i} + \left( 1- \frac{(\mathbf {x}\cdot \mathbf{{r}_i})^2}{r_i^2}\right) \displaystyle \frac{\text {d}^2\phi (r_i)}{\text {d}r_i^2}. \end{aligned}$$

Since \(\mathbf {x}_i, \mathbf {x}\in \mathbb {S}^2\), \(||\mathbf {x}_i||=||\mathbf {x}||=1\), so from the law of cosines \(||\mathbf {x}_i||^2=||\mathbf{{r}}_i-\mathbf {x}||^2=r_{i}^2+||\mathbf {x}||^2-2r_{i}||\mathbf {x}||\cos (\mathbf{{r}}_i,\mathbf {x})\) we find that \(r_{i}=2\cos (\mathbf{{r}}_i,\mathbf {x})\) and, hence, \({\mathbf {x}\cdot \mathbf{{r}_i}}={||\mathbf {x}||r_i \cos (\mathbf{{r}}_i,\mathbf {x})}=r_i^2/2\). Using this result in (51) we finally obtain (20).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Álvarez, D., González-Rodríguez, P. & Moscoso, M. A Closed-Form Formula for the RBF-Based Approximation of the Laplace–Beltrami Operator. J Sci Comput 77, 1115–1132 (2018).

Download citation


  • Radial basis functions
  • Surface Laplacian
  • Surface PDE
  • Cardiology

Mathematics Subject Classification

  • 65D05
  • 35R01
  • 58J05