Journal of Scientific Computing

, Volume 77, Issue 2, pp 1115–1132 | Cite as

A Closed-Form Formula for the RBF-Based Approximation of the Laplace–Beltrami Operator

  • Diego ÁlvarezEmail author
  • Pedro González-Rodríguez
  • Miguel Moscoso


In this paper we present a method that uses radial basis functions to approximate the Laplace–Beltrami operator that allows to solve numerically diffusion (and reaction–diffusion) equations on smooth, closed surfaces embedded in \(\mathbb {R}^3\). The novelty of the method is in a closed-form formula for the Laplace–Beltrami operator derived in the paper, which involve the normal vector and the curvature at a set of points on the surface of interest. An advantage of the proposed method is that it does not rely on the explicit knowledge of the surface, which can be simply defined by a set of scattered nodes. In that case, the surface is represented by a level set function from which we can compute the needed normal vectors and the curvature. The formula for the Laplace–Beltrami operator is exact for radial basis functions and it also depends on the first and second derivatives of these functions at the scattered nodes that define the surface. We analyze the converge of the method and we present numerical simulations that show its performance. We include an application that arises in cardiology.


Radial basis functions Surface Laplacian Surface PDE Cardiology 

Mathematics Subject Classification

65D05 35R01 58J05 



This work has been supported by Spanish MICINN Grant FIS2016-77892-R. We thank the anonymous reviewer for his or her careful reading of our manuscript and his or her many insightful comments and suggestions.


  1. 1.
    Alvarez, D., Alonso-Atienza, F., Rojo-Alvarez, J.L., Garcia-Alberola, A., Moscoso, M.: Shape reconstruction of cardiac ischemia from non-contact intracardiac recordings: a model study. Math. Comput. Model. 55, 1770–1781 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ayton, G.S., McWhirter, J.L., McMurty, P., Voth, G.A.: Coupling field theory with continuum mechanics: a simulation of domain formation in giant unilamellar vesicles. Biophys. J. 88, 3855–3869 (2005)CrossRefGoogle Scholar
  3. 3.
    Barreira, R., Elliott, C.M., Madzvamuse, A.: The surface finite element method for pattern formation on evolving biological surfaces. J. Math. Biol. 63, 1095–1119 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bayona, V., Moscoso, M., Carretero, M., Kindelan, M.: RBF-FD formulas and convergence properties. J. Comput. Phys. 229, 8281–8295 (2010)CrossRefGoogle Scholar
  5. 5.
    Bertalmío, M., Bertozzi, A., Sapiro, G.: Navier–Stokes, fluid dynamics, and image and video inpainting. In: Proceedings of IEEE-CVPR, pp. 355–362 (2001)Google Scholar
  6. 6.
    Buhmann, M.: Radial Basis Functions. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  7. 7.
    Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans. T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques (SIGGRAPH ’01), pp. 67–76. ACM, New York (2001).
  8. 8.
    Chavez, C., Zemzemi, N., Coudiere, Y., Alonso-Atienza, F., Alvarez, D.: Inverse Problem of Electrocardiography: Estimating the Location of Cardiac Ischemia in a 3D Realistic Geometry. Lecture Notes in Computer Science, vol. 9126. Springer, Cham (2015)Google Scholar
  9. 9.
    Driscoll, T.A., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43, 413–422 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289–396 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Floater, M., Hormann, K.: Surface parameterization: a tutorial and survey. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds.) Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer, Berlin (2005)CrossRefGoogle Scholar
  12. 12.
    Flyer, N., Wright, G.B.: Transport schemes on a sphere using radial basis functions. J. Comput. Phys. 226, 1059–1084 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Flyer, N., Wright, G.B.: A radial basis function method for the shallow water equations on a sphere. Proc. R. Soc. A 465, 1949–1976 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30, 60–80 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fonberg, B., Flyer, N.: A primer on radial basis functions with applications to geosciences. In: CBMS-NSF Regional Conference Series in Applied Mathematics (2015)Google Scholar
  16. 16.
    Fuselier, E.J., Wright, G.B.: Scattered data on embedded submanifolds with restricted positive definite kernel: Sobolev error estimates. SIAM J. Numer. Anal. 50, 1753–1776 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fuselier, E.J., Wright, G.B.: A high-order kernel method for diffusion and reaction–diffusion equations on surfaces. J. Sci. Comput. 56, 535–565 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    González-Rodríguez, P., Bayona, V.-, Moscoso, M., Kindelan, M.: Laurent series based RBF-FD method to avoid ill-conditioning. Eng. Anal. Bound. Elem. 52, 24–31 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Greer, J.B.: An improvement of a recent Eulerian method for solving PDEs on general geometries. J. Sci. Comput. 29, 321–352 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    James, A.J., Lowengrub, J.: A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. J. Comput. Phys. 201, 685–722 (2004)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kansa, E.J.: Multiquadrics, a scattered data approximation scheme with applications to computational fluid dynamics. I. Surface approximations and partial derivatives estimates. Comput. Math. Appl. 19, 127–145 (1990)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kansa, E.J.: Multiquadrics, a scattered data approximation scheme with applications to computational fluid dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19, 147–161 (1990)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kindelan, M., Moscoso, M., González-Rodríguez, P.: Radial basis function interpolation in the limit of increasingly flat basis functions. J. Comput. Phys. 307, 225–242 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Macdonald, C.B., Ruuth, S.J.: The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM J. Sci. Comput. 31, 4330–4350 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Memoli, F., Sapiro, G., Thompson, P.: Implicit brain imaging. Hum. Brain Mapp. 23, 179–188 (2004)Google Scholar
  26. 26.
    Mitchell, C.C., Shaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65, 767–793 (2003)CrossRefGoogle Scholar
  27. 27.
    Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx. 2, 11–22 (1986)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Myers, T.G., Charpin, J.P.F.: A mathematical model for atmospheric ice accretion and water flow on a cold surface. Int. J. Heat Mass Trans. 47, 5483–5500 (2004)CrossRefGoogle Scholar
  29. 29.
    Piret, C.: The orthogonal gradients method: a radial basis functions method for solving partial differential equations on arbitrary surfaces. J. Comput. Phys. 231, 4662–4675 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Ruuth, S.J., Merriman, B.: A simple embedding method for solving partial differential equations on surfaces. J. Comput. Phys. 227, 1943–1961 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Schaback, R.: Multivariate interpolation by polynomials and radial basis functions. Constr. Approx. 21, 293–317 (2005)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Shankar, V., Wright, G.B., Kirby, R.M., Fogelson, A.L.: A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction–diffusion equations on surfaces. J. Sci. Comput. 63, 745–768 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Shu, C., Ding, H., Yeo, K.S.: Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 192, 941–954 (2003)CrossRefGoogle Scholar
  34. 34.
    Stam, J.: Flows on surfaces of arbitrary topology. ACM Trans. Graph. 22, 724–731 (2003)CrossRefGoogle Scholar
  35. 35.
    Tang, P., Qiu, F., Zhang, H., Yang, Y.: Phase separation patterns for diblock copolymers on spherical surfaces: a finite volume method. Phys. Rev. E 72, 016710 (2005)CrossRefGoogle Scholar
  36. 36.
    Tolstykh, A.I., Shirobokov, D.A.: On using radial basis functions in a “finite difference mode” with applications to elasticity problems. Comput. Mech. 33, 68–79 (2003)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Wright, G.B.: Radial basis function interpolation: numerical and analytical developments. Ph.D. thesis, University of Colorado, Boulder (2003)Google Scholar
  38. 38.
    Wright, G.B., Flyer, N., Yuen, D.A.: A hybrid radial basis function-pseudospectral method for thermal convection in a 3D spherical shell. Geophys. Geochem. Geosyst. 11, Q07003 (2010)CrossRefGoogle Scholar
  39. 39.
    Womersley, R.S., Sloan, I.: How good can polynomial interpolation on the sphere be? Adv. Comput. Math. 14, 195–226 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad Carlos III de MadridLeganésSpain

Personalised recommendations