Skip to main content
Log in

An Implicit Eulerian–Lagrangian WENO3 Scheme for Nonlinear Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a new, formally third order, implicit Weighted Essentially Non-Oscillatory (iWENO3) finite volume scheme for solving systems of nonlinear conservation laws. We then generalize it to define an implicit Eulerian–Lagrangian WENO (iEL-WENO) scheme. Implicitness comes from the use of an implicit Runge–Kutta (RK) time integrator. A specially chosen two-stage RK method allows us to drastically simplify the computation of the intermediate RK fluxes, leading to a computationally tractable scheme. The iEL-WENO3 scheme has two main steps. The first accounts for particles being transported within a grid element in a Lagrangian sense along the particle paths. Since this particle velocity is unknown (in a nonlinear problem), a fixed trace velocity v is used. The second step of the scheme accounts for the inaccuracy of the trace velocity v by computing the flux of particles crossing the incorrect tracelines. The CFL condition is relaxed when v is chosen to approximate the characteristic velocity. A new Roe solver for the Euler system is developed to account for the Lagrangian tracings, which could be useful even for explicit EL-WENO schemes. Numerical results show that iEL-WENO3 is both less numerically diffusive and can take on the order of about 2–3 times longer time steps than standard WENO3 for challenging nonlinear problems. An extension is made to the advection–diffusion equation. When advection dominates, the scheme retains its third order accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Alexander, R.: Diagonally implicit Runge–Kutta methods for stiff O.D.E’.s. SIAM J. Numer. Anal. 14(6), 1006–1021 (1977)

    Article  MathSciNet  Google Scholar 

  2. Arbogast, T., Huang, C.: A fully mass and volume conserving implementation of a characteristic method for transport problems. SIAM J. Sci. Comput. 28(6), 2001–2022 (2006)

    Article  MathSciNet  Google Scholar 

  3. Arbogast, T., Wang, W.: Convergence of a fully conservative volume corrected characteristic method for transport problems. SIAM J. Numer. Anal. 48(3), 797–823 (2010)

    Article  MathSciNet  Google Scholar 

  4. Arbogast, T., Wheeler, M.F.: A characteristics-mixed finite element method for advection dominated transport problems. SIAM J. Numer. Anal. 32, 404–424 (1995)

    Article  MathSciNet  Google Scholar 

  5. Cadiou, A., Tenaud, C.: Implicit WENO shock capturing scheme for unsteady flows. Application to one-dimensional Euler equations. Int. J. Numer. Meth. Fluids 45, 197–229 (2004)

    Article  Google Scholar 

  6. Chen, Y., Yang, S., Yang, Y.J.: Implicit weighted essentially non-oscillatory schemes for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 31, 747–765 (1999)

    Article  MathSciNet  Google Scholar 

  7. Črnjarić Žic, N., Crnković, B.: High order accurate semi-implicit WENO schemes for hyperbolic balance laws. Appl. Math. Comput. 217, 8611–8629 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Douglas Jr., J., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)

    Article  MathSciNet  Google Scholar 

  9. Gottlieb, S., Mullen, J.S.: An implicit weno scheme for steady-state computation of scalar hyperbolic equations. In: Bathe, K.J. (ed.) Computational Fluid and Solid Mechanics, vol. 2, pp. 1946–1950. Elsevier, Amsterdam (2003)

    Google Scholar 

  10. Gottlieb, S., Mullen, J.S., Ruuth, S.J.: A fifth order flux implicit WENO method. J. Sci. Comput. 27(1–3), 271–287 (2006)

    Article  MathSciNet  Google Scholar 

  11. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high-order accurate essentially nonoscillatory schemes III. J. Comput. Phys. 71(2), 231–303 (1987)

    Article  MathSciNet  Google Scholar 

  12. Harten, A., Osher, S.: Uniformly high-order accurate nonoscillatory schemes I. SIAM J. Numer. Anal. 24(2), 279–309 (1987)

    Article  MathSciNet  Google Scholar 

  13. Hsieh, T.J., Wang, C.H., Yang, J.Y.: Simulation of multiple shock–shock interference using implicit anti-diffusive WENO schemes. Int. J. Numer. Methods Fluids 62(2), 138–165 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Huang, C.S., Arbogast, T.: An Eulerian–Lagrangian WENO scheme for nonlinear conservation laws. Numer. Methods Partial Differ. Eq. 33(3), 651–680 (2017). https://doi.org/10.1002/num.22091

    Article  MATH  Google Scholar 

  15. Huang, C.S., Arbogast, T., Hung, C.H.: A semi-Lagrangian finite difference WENO scheme for scalar nonlinear conservation laws. J. Comput. Phys. 322, 559–585 (2016). https://doi.org/10.1016/j.jcp.2016.06.027

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, C.S., Arbogast, T., Qiu, J.: An Eulerian–Lagrangian WENO finite volume scheme for advection problems. J. Comput. Phys. 231(11), 4028–4052 (2012). https://doi.org/10.1016/j.jcp.2012.01.030

    Article  MathSciNet  Google Scholar 

  17. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  18. Kennedy, C., Carpenter, M.: Diagonally implicit Runge–Kutta methods for ordinary differential equations. A review. Tech. Rep. NASA/TM–2016–219173, National Aeronautics and Space Administration, Langley Research Center, Hampton, Virginia (2016)

  19. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws. Math. Model. Numer. Anal. 33, 547–571 (1999)

    Article  MathSciNet  Google Scholar 

  20. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656–672 (2000)

    Article  MathSciNet  Google Scholar 

  21. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  Google Scholar 

  22. Osher, S., Shu, C.W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM. J. Numer. Anal. 28, 907–922 (1991)

    Article  MathSciNet  Google Scholar 

  23. Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier–Stokes equations. Numer. Math. 38, 309–332 (1981/82)

  24. Qiu, J., Shu, C.W.: On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes. J. Comput. Phys. 183, 187–209 (2002)

    Article  MathSciNet  Google Scholar 

  25. Qiu, J.M., Christlieb, A.: A conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229, 1130–1149 (2010)

    Article  MathSciNet  Google Scholar 

  26. Qiu, J.M., Shu, C.W.: Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. J. Comput. Phys. 230(4), 863–889 (2011)

    Article  MathSciNet  Google Scholar 

  27. Qiu, J.M., Shu, C.W.: Conservative semi-Lagrangian finite difference WENO formulations with applications to the Vlasov equation. Commun. Comput. Phys. 10, 979–1000 (2011)

    Article  MathSciNet  Google Scholar 

  28. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MathSciNet  Google Scholar 

  29. Shu, C.W.: Numerical experiments on the accuracy of ENO and modified ENO schemes. J. Sci. Comput. 5, 127–149 (1990)

    Article  Google Scholar 

  30. Shu, C.W.: High order numerical methods for time dependent Hamilton-Jacobi equations. In: Mathematics and Computation in Imaging Science and Information Processing. Lecture Notes Series, vol. 11, chapter. 2, pp. 47–91. Institute for Mathematical Sciences, National University of Singapore (2007)

  31. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  32. Yang, J., Perng, Y., Yen, R.: Implicit weighted essentially non-oscillatory schemes for the compressible Navier–Stokes equations. AIAA J. 39(11), 2082–2090 (2001)

    Article  Google Scholar 

  33. Zennaro, M.: Natural continuous extensions of Runge–Kutta methods. Math. Comput. 46, 119–133 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Taiwan Ministry of Science and Technology (Grant No. 105-2115-M-110-006-MY2), the U.S. National Science Foundation (Grant No. DMS-1418752), the Multidisciplinary and Data Science Research Center of National Sun Yat-sen University, Taiwan and Mathematics Division, National Center for Theoretical Sciences, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chieh-Sen Huang.

Additional information

This work was supported in part by the Taiwan Ministry of Science and Technology Grant MOST 105-2115-M-110-006-MY2, National Center for Theoretical Sciences, Taiwan, and the Multidisciplinary and Data Science Research Center of the National Sun Yat-sen University, and by the U.S. National Science Foundation under Grant DMS-1418752.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CS., Arbogast, T. An Implicit Eulerian–Lagrangian WENO3 Scheme for Nonlinear Conservation Laws. J Sci Comput 77, 1084–1114 (2018). https://doi.org/10.1007/s10915-018-0738-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0738-2

Keywords

Mathematics Subject Classification

Navigation