Skip to main content
Log in

Explicit Runge–Kutta Methods for Stiff Problems with a Gap in Their Eigenvalue Spectrum

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we consider the numerical solution of stiff problems in which the eigenvalues are separated into two clusters, one containing the “stiff”, or fast, components and one containing the slow components, that is, there is a gap in their eigenvalue spectrum. By using exponential fitting techniques we develop a class of explicit Runge–Kutta methods, that we call stability fitted methods, for which the stability domain has two regions, one close to the origin and the other one fitting the large eigenvalues. We obtain the size of their stability regions as a function of the order and the fitting conditions. We also obtain conditions that the coefficients of these methods must satisfy to have a given stiff order for the Prothero–Robinson test equation. Finally, we construct an embedded pair of stability fitted methods of orders 2 and 1 and show its performance by means of several numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abdulle, A.: Fourth order Chebyshev methods with recurrence relation. SIAM J. Sci. Comput. 23(6), 2041–2054 (2002)

    Article  MathSciNet  Google Scholar 

  2. Abdulle, A., Cirilli, S.: S-ROCK: Chebyshev methods for stiff stochastic differential equations. SIAM J. Sci. Comput. 30(2), 997–1014 (2008)

    Article  MathSciNet  Google Scholar 

  3. Abdulle, A., Li, T.: S-ROCK methods for stiff Ito SDEs. Commun. Math. Sci. 6(4), 845–868 (2008)

    Article  MathSciNet  Google Scholar 

  4. Abdulle, A., Vilmart, G.: PIROCK: a swiss-knife partitioned implicit-explicit orthogonal Runge–Kutta Chebyshev integrator for stiff diffusion–advection–reaction problems with or without noise. J. Comput. Phys. 242, 869–888 (2013)

    Article  MathSciNet  Google Scholar 

  5. Baungarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MathSciNet  Google Scholar 

  6. Bogacki, P., shampine, L.F.: A 3(2) pair of Runge–Kutta formulas. Appl. Math. Lett. 2(4), 321–325 (1989)

    Article  MathSciNet  Google Scholar 

  7. Cash, J.R.: On the design of high order exponentially fitted formulae for the numerical integration of stiff systems. Numer. Math. 36(3), 253–266 (1980/81)

    Article  MathSciNet  Google Scholar 

  8. Dekker, K., Verwer, J.G.: Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations. CWI Monographs, 2. North-Holland, Amsterdam (1984)

  9. Frank, R., Schneid, J., Ueberhuber, C.W.: The concept of B-convergence. SIAM J. Numer. Anal. 18, 753–781 (1981)

    Article  MathSciNet  Google Scholar 

  10. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  11. Gear, C.W., Kevrekidis, I.G.: Projective methods for stiff differential equations: problems with gaps in their eigenvalue spectrum. SIAM J. Sci. Comput. 24(4), 1091–1106 (2003)

    Article  MathSciNet  Google Scholar 

  12. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations: Stiff and Differential-Algebraic Problems, 2nd edn. Springer Series in Comput. Math., vol 14 (1996)

  13. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  Google Scholar 

  14. Hollevoet, D., Van Daele, M.: Exponentially-fitted methods and their stability functions. J. Comput. Appl. Math. 236(16), 4006–4015 (2012)

    Article  MathSciNet  Google Scholar 

  15. Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations. Springer Series in Computational Mathematics. Springer, New York (2003)

    Chapter  Google Scholar 

  16. Ixaru, LGr, Berghe, Gr Vanden: Exponential Fitting. Kluwer Academic Publishers, Dordrecht (2004)

    Book  Google Scholar 

  17. Jackson, L.W., Kenue, S.K.: A fourth order exponentially fitted method. SIAM J. Numer. Anal. 11(5), 965–978 (1974)

    Article  MathSciNet  Google Scholar 

  18. Jiménez, S., Vázquez, L.: Analysis of four numerical schemes for a nonlinear Klein–Gordon equation. Appl. Math. Comput. 35, 61–93 (1990)

    MathSciNet  MATH  Google Scholar 

  19. Ketcheson, D.I., Ahmadia, A.J.: Optimal stability polynomials for numerical integration of initial value problems. Commun. Appl. Math. Comput. Sci. 7(2), 247–271 (2012)

    Article  MathSciNet  Google Scholar 

  20. Lebedev, V.I.: How to solve stiff systems of differential equations by explicit methods. In: Marchuk, G.I. (ed.) Numerical Methods and Applications, pp. 45–80. CRC Press, Boca Raton (1994)

    Google Scholar 

  21. Liniger, W., Willoughby, R.A.: Efficient integration methods for stiff systems of ordinary differential equations. SIAM J. Numer. Anal. 7(1), 47–66 (1970)

    Article  MathSciNet  Google Scholar 

  22. Marden, M.: The Geometry of the Zeros of a Polynomial in a Complex Variable. Math. Surveys No. 3. Amer. Math. Soc, Providence (1949)

    MATH  Google Scholar 

  23. Ortega, J.M.: Numerical Analysis. A Second Course. Academic Press, New York (1972). Computer Science and Applied Mathematics

    MATH  Google Scholar 

  24. Prothero, A., Robinson, A.: On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. Math. Comput. 28, 145–162 (1974)

    Article  MathSciNet  Google Scholar 

  25. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE Suite. SIAM J. Sci. Comput. 18, 1–22 (1997)

    Article  MathSciNet  Google Scholar 

  26. Sommeijer, B.P., Shampine, L.F., Verwer, J.G.: RKC: an explicit solver for parabolic PDEs. J. Comput. Appl. Math. 88, 315–326 (1997)

    Article  MathSciNet  Google Scholar 

  27. Sommeijer, B.P., Verwer, J.G.: A performance evaluation of a class of Runge–Kutta Chebyshev methods for solving semi-discrete parabolic differential equations, Report NW91/80, Mathematisch Centrum, Amsterdam (1980)

  28. van der Houwen, P.J.: The development of Runge–Kutta methods for partial differential equations. Appl. Numer. Math. 20, 261–272 (1996)

    Article  MathSciNet  Google Scholar 

  29. van der Houwen, P.J., Sommeijer, B.P.: On the internal stability of explicit, \(m\)-stage Runge-Kutta methods for large \(m\) values. Z. Angew. Math. Mech. 60, 479–485 (1980)

    Article  MathSciNet  Google Scholar 

  30. Verwer, J.G., Sommeijer, B., Hundsdorfer, W.: RKC time-stepping for advection–diffusion–reaction problems. J. Comput. Phys. 201, 61–79 (2004)

    Article  MathSciNet  Google Scholar 

  31. Verwer, J.G.: Explicit Runge–Kutta methods for parabolic partial differential equations. Appl. Numer. Math. 22, 359–379 (1996)

    Article  MathSciNet  Google Scholar 

  32. Voss, D.: A fifth-order exponentially fitted formula. SIAM J. Numer. Anal. 25(3), 670–678 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan I. Montijano.

Additional information

This work was supported by D.G.I. Project MTM2013-47318-C2-1-P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocher, P., Montijano, J.I., Rández, L. et al. Explicit Runge–Kutta Methods for Stiff Problems with a Gap in Their Eigenvalue Spectrum. J Sci Comput 77, 1055–1083 (2018). https://doi.org/10.1007/s10915-018-0737-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0737-3

Keywords

Mathematics Subject Classification

Navigation