Skip to main content
Log in

Stability Analysis and Error Estimates of Semi-implicit Spectral Deferred Correction Coupled with Local Discontinuous Galerkin Method for Linear Convection–Diffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we focus on the theoretical analysis of the second and third order semi-implicit spectral deferred correction (SDC) time discretization with local discontinuous Galerkin (LDG) spatial discretization for the one-dimensional linear convection–diffusion equations. We mainly study the stability and error estimates of the corresponding fully discrete scheme. Based on the Picard integral equation, the SDC method is driven iteratively by either the explicit Euler method or the implicit Euler method. It is easy to implement for arbitrary order of accuracy. For the semi-implicit SDC scheme, the iteration and the left-most endpoint involved in the integral for the implicit part increase the difficulty of the theoretical analysis. To be more precise, the test functions are more complex and the energy equations are more difficult to construct, compared with the Runge–Kutta type semi-implicit schemes. Applying the energy techniques, we obtain both the second and third order semi-implicit SDC time discretization with LDG spatial discretization are stable provided the time step \(\tau \le \tau _{0}\), where the positive \(\tau _{0}\) depends on the diffusion and convection coefficients and is independent of the mesh size h. We then obtain the optimal error estimates for the corresponding fully discrete scheme under the condition \(\tau \le \tau _{0}\) with similar technique for stability analysis. Numerical examples are presented to illustrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

    Article  MathSciNet  Google Scholar 

  2. Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)

    Article  MathSciNet  Google Scholar 

  3. Boscarino, S., Qiu, J.M., Russo, G.: Implicit–explicit integral deferred correction methods for stiff problems. SIAM J. Sci. Comput. 40, A787–A816 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MathSciNet  Google Scholar 

  5. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  6. Calvo, M.P., Frutos, J.D., Novo, J.: Linearly implicit Runge–Kutta methods for advection–reaction–diffusion equations. Appl. Numer. Math. 37, 535–549 (2001)

    Article  MathSciNet  Google Scholar 

  7. Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  Google Scholar 

  9. Christlieb, A., Ong, B., Qiu, J.M.: Comments on high-order integrators embedded within integral deferred correction methods. Commun. Appl. Math. Comput. Sci. 4, 27–56 (2009)

    Article  MathSciNet  Google Scholar 

  10. Christlieb, A., Ong, B., Qiu, J.M.: Integral deferred correction methods constructed with high order Runge–Kutta integrators. Math. Comput. 79, 761–783 (2010)

    Article  MathSciNet  Google Scholar 

  11. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  Google Scholar 

  13. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  Google Scholar 

  14. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT 40, 241–266 (2000)

    Article  MathSciNet  Google Scholar 

  15. Feng, X.L., Tang, T., Yang, J.L.: Long time numerical simulations for phase-field problems using p-adaptive spectral deferred correction methods. SIAM J. Sci. Comput. 37, A271–A294 (2015)

    Article  MathSciNet  Google Scholar 

  16. Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete Fourier colocation spectral method for 3-D viscous Burger’s equation. J. Sci. Comput. 53, 102–128 (2012)

    Article  MathSciNet  Google Scholar 

  17. Guo, R.H., Xia, Y.H., Xu, Y.: Semi-implicit spectral deferred correction methods for highly nonlinear partial differential equations. J. Comput. Phys. 338, 269–284 (2017)

    Article  MathSciNet  Google Scholar 

  18. Hesthaven, J., Warburton, T.: Nodal Discontinuous Galerkin Methods, Algorithms, Analysis, and Applications. Springer, New York (2008)

    MATH  Google Scholar 

  19. Layton, A.T., Minion, M.L.: Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations. BIT 45, 341–373 (2005)

    Article  MathSciNet  Google Scholar 

  20. Minion, M.L.: Semi-implicit spectral deferred correction methods for ordinary differential equations. Commun. Math. Sci. 1, 471–500 (2003)

    Article  MathSciNet  Google Scholar 

  21. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transprot equation, Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  22. Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Theory and Implementation. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  23. Ruprecht, D., Speck, R.: Spectral deferred corrections with fast-wave slow-wave splitting. SIAM J. Sci. Comput. 38, A2535–A2557 (2016)

    Article  MathSciNet  Google Scholar 

  24. Shu, C.-W.: Discontinuous Galerkin methods general: approach and stability. In: Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds.) Numerical Solutions of Partial Differential Equations, Advanced Courses in Mathematics, CRM Barcelona, pp. 149–201. Birkhäuser, Besel (2009)

    Google Scholar 

  25. Wang, H.J., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin method with implicit–explicit time-marching for advection–diffusion problems. SIAM J. Numer. Anal. 53, 206–227 (2015)

    Article  MathSciNet  Google Scholar 

  26. Wang, H.J., Shu, C.-W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for nonlinear convection–diffusion problems. Appl. Math. Comput. 272, 237–258 (2016)

    MathSciNet  Google Scholar 

  27. Wang, H.J., Wang, S.P., Shu, C.-W., Zhang, Q.: Local discontinuous Galerkin methods with implicit–explicit time-marching for multi-dimensional convection–diffusion problems. ESAIM Math. Model. Numer. Anal. 50, 1083–1105 (2016)

    Article  MathSciNet  Google Scholar 

  28. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for two classes of two dimensional nonlinear wave equations. Physica D 208, 21–58 (2008)

    Article  MathSciNet  Google Scholar 

  29. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Xia, Y.H., Xu, Y., Shu, C.-W.: Efficient time discretization for local discontinuous Galerkin methods. Discrete Contin. Dyn. Syst. Ser. B 8, 677–693 (2007)

    Article  MathSciNet  Google Scholar 

  31. Xia, Y.H.: A fully discrete stable discontinuous Galerkin method for the thin film epitaxy problem without slope selection. J. Comput. Phys. 280, 248–260 (2015)

    Article  MathSciNet  Google Scholar 

  32. Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for Kdv type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)

    Article  MathSciNet  Google Scholar 

  33. Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004)

    Article  MathSciNet  Google Scholar 

  34. Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for symmetrizable systerms of conservation laws. SIAM J. Numer. Anal. 44, 1703–1720 (2006)

    Article  MathSciNet  Google Scholar 

  35. Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimates to the third order explicit Runge–Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48, 1038–1063 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu.

Additional information

Yan Xu is supported by NSFC Grant Nos. 11722112, 91630207.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Xu, Y. Stability Analysis and Error Estimates of Semi-implicit Spectral Deferred Correction Coupled with Local Discontinuous Galerkin Method for Linear Convection–Diffusion Equations. J Sci Comput 77, 1001–1029 (2018). https://doi.org/10.1007/s10915-018-0735-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0735-5

Keywords

Navigation