Advertisement

Upscaled HDG Methods for Brinkman Equations with High-Contrast Heterogeneous Coefficient

  • Guanglian Li
  • Ke Shi
Article

Abstract

In this paper, we present new upscaled HDG methods for Brinkman equations in the context of high-contrast heterogeneous media. The a priori error estimates are derived in terms of both fine and coarse scale parameters that depend on the high-contrast coefficient weakly. Due to the heterogeneity of the problem, a huge global system will be produced after the numerical discretization of HDG method. Thanks to the upscaled structure of the proposed methods, we are able to reduce the huge global system onto the skeleton of the coarse mesh only while still capturing important fine scale features of this problem. The finite element space over the coarse mesh is irrelevant to the fine scale computation. This feature makes our proposed method very attractive. Several numerical examples are presented to support our theoretical findings.

Keywords

Multiscale FEM Brinkman equation Hybridizable DG methods 

References

  1. 1.
    Gulbransen, A.F., Hauge, V.L., Lie, K.-A.: A multiscale mixed finite-element method for vuggy and naturally-fractured reservoirs. Soc. Petrol. Eng. J. 15(12), 395–403 (2010)Google Scholar
  2. 2.
    Khaled, A., Vafai, K.: The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transf. 46(26), 4989–5003 (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Iliev, O., Lazarov, R., Willems, J.: Variational multiscale finite element method for flows in highly porous media. Multiscale Model. Simul. 9(4), 1350–1372 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Efendiev, Y., Lazarov, R., Shi, K., Multiscale, A.: HDG method for second order elliptic equations. Part I. Polynomial and homogenization-based multiscale spaces. SIAM J. Numer. Anal. 53(1), 342–369 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Efendiev, Y., Lazarov, R., Moon, M., Shi, K.: A spectral multiscale hybridizable discontinuous Galerkin method for second order elliptic problems. Comput. Methods Appl. Mech. Eng. 292, 243–256 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Galvis, J., Li, G., Shi, K.: A generalized multiscale finite element method for the Brinkman equation. J. Comput. Appl. Math. 280, 294–309 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cockburn, B., Shi, K.: Conditions for superconvergence of HDG methods for Stokes equations. Math. Comput. 82(282), 651–671 (2013)CrossRefzbMATHGoogle Scholar
  8. 8.
    Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77(264), 1887–1916 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
  10. 10.
    Cockburn, B., Fu, G.: Superconvergence by M-decompositions. Part II: construction of two-dimensional finite elements. ESAIM Math Model Numer Anal 51, 165–186 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cockburn, B., Fu, G.: Superconvergence by M-decompositions. Part III: construction of three-dimensional finite elements. ESAIM Math Model Numer Anal 51(1), 365–398 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Arbogast, T., Pencheva, G., Wheeler, M.F., Yotov, I.: A multiscale mortar mixed finite element method. Multiscale Model. Simul. 6, 319–346 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cockburn, B., Shi, K.: Devising HDG methods for Stokes flow: an overview. Comput. Fluids 98, 221–229 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, vol. 5. Springer, Berlin (2012)zbMATHGoogle Scholar
  15. 15.
    Scott, L., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsImperial College LondonLondonUK
  2. 2.Department of Mathematics and StatisticsOld Dominion UniversityNorfolkUSA

Personalised recommendations