Advertisement

Journal of Scientific Computing

, Volume 77, Issue 1, pp 330–371 | Cite as

High Spatial Order Energy Stable FDTD Methods for Maxwell’s Equations in Nonlinear Optical Media in One Dimension

  • Vrushali A. Bokil
  • Yingda Cheng
  • Yan Jiang
  • Fengyan Li
  • Puttha SakkaplangkulEmail author
Article
  • 291 Downloads

Abstract

In this paper, we consider electromagnetic (EM) wave propagation in nonlinear optical media in one spatial dimension. We model the EM wave propagation by the time-dependent Maxwell’s equations coupled with a system of nonlinear ordinary differential equations (ODEs) for the response of the medium to the EM waves. The nonlinearity in the ODEs describes the instantaneous electronic Kerr response and the residual Raman molecular vibrational response. The ODEs also include the single resonance linear Lorentz dispersion. For such model, we will design and analyze fully discrete finite difference time domain (FDTD) methods that have arbitrary (even) order in space and second order in time. It is challenging to achieve provable stability for fully discrete methods, and this depends on the choices of temporal discretizations of the nonlinear terms. In Bokil et al. (J Comput Phys 350:420–452, 2017), we proposed novel modifications of second-order leap-frog and trapezoidal temporal schemes in the context of discontinuous Galerkin methods to discretize the nonlinear terms in this Maxwell model. Here, we continue this work by developing similar time discretizations within the framework of FDTD methods. More specifically, we design fully discrete modified leap-frog FDTD methods which are proved to be stable under appropriate CFL conditions. These method can be viewed as an extension of the Yee-FDTD scheme to this nonlinear Maxwell model. We also design fully discrete trapezoidal FDTD methods which are proved to be unconditionally stable. The performance of the fully discrete FDTD methods are demonstrated through numerical experiments involving kink, antikink waves and third harmonic generation in soliton propagation.

Keywords

Maxwell’s equations Nonlinear dispersion High order FDTD Energy stability Soliton propagation 

Notes

Acknowledgements

The authors would like to thank ICERM’s Collaborate@ICERM program as well as the Research in Pairs program at MFO, Oberwolfach in Germany for their support of co-authors Bokil, Cheng and Li.

References

  1. 1.
    Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, Cambridge (2007)zbMATHGoogle Scholar
  2. 2.
    Anne, L., Joly, P., Tran, Q.H.: Construction and analysis of higher order finite difference schemes for the 1D wave equation. Comput. Geosci. 4, 207–249 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aregba-Driollet, D.: Godunov scheme for Maxwell’s equations with Kerr nonlinearity. Commun. Math. Sci. 13, 2195–2222 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bokil, V., Gibson, N.: Analysis of spatial high-order finite difference methods for Maxwell’s equations in dispersive media. IMA J. Numer. Anal. 32, 926–956 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bokil, V.A., Cheng, Y., Jiang, Y., Li, F.: Energy stable discontinuous Galerkin methods for Maxwell’s equations in nonlinear optical media. J. Comput. Phys 350, 420–452 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bokil, V.A., Gibson, N.G.: High-order staggered finite difference methods for Maxwell’s equations in dispersive media. Technical Report ORST-MATH-10-01, Oregon State University. http://hdl.handle.net/1957/13786, January (2010)
  7. 7.
    Bourgeade, A., Nkonga, B.: Numerical modeling of laser pulse behavior in nonlinear crystal and application to the second harmonic generation. Multiscale Model. Simul. 4, 1059–1090 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cohen, G.C.: Higher-Order Numerical Methods for Transient Wave Equations. Springer, Berlin (2001)Google Scholar
  9. 9.
    de La Bourdonnaye, A.: High-order scheme for a nonlinear Maxwell system modelling Kerr effect. J. Comput. Phys. 160, 500–521 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fisher, A., White, D., Rodrigue, G.: An efficient vector finite element method for nonlinear electromagnetic modeling. J. Comput. Phys. 225, 1331–1346 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fornberg, B.: On a Fourier method for the integration of hyperbolic equations. SIAM J. Numer. Anal. 12(4), 509–528 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fornberg, B., Ghrist, M.: Spatial finite difference approximations for wave-type equations. SIAM J. Numer. Anal. 37, 105–130 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fujii, M., Tahara, M., Sakagami, I., Freude, W., Russer, P.: High-order FDTD and auxiliary differential equation formulation of optical pulse propagation in 2-D Kerr and Raman nonlinear dispersive media. IEEE J. Quantum Electron. 40, 175–182 (2004)CrossRefGoogle Scholar
  14. 14.
    Gedney, S.D., Young, J.C., Kramer, T.C., Roden, J.A.: A discontinuous Galerkin finite element time-domain method modeling of dispersive media. IEEE Trans. Antennas Propag. 60, 1969–1977 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ghrist, M.: Finite Difference Methods for Wave Equations. Ph.D. Thesis, University of Colorado, Boulder, CO (2000)Google Scholar
  16. 16.
    Gilles, L., Hagness, S., Vázquez, L.: Comparison between staggered and unstaggered finite-difference time-domain grids for few-cycle temporal optical soliton propagation. J. Comput. Phys. 161, 379–400 (2000)CrossRefzbMATHGoogle Scholar
  17. 17.
    Goorjian, P.M., Taflove, A., Joseph, R.M., Hagness, S.C.: Computational modeling of femtosecond optical solitons from Maxwell’s equations. IEEE J. Quantum Electron. 28, 2416–2422 (1992)CrossRefGoogle Scholar
  18. 18.
    Greene, J.H., Taflove, A.: General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics. Opt. Express 14, 8305–8310 (2006)CrossRefGoogle Scholar
  19. 19.
    Hile, C.V., Kath, W.L.: Numerical solutions of Maxwell’s equations for nonlinear-optical pulse propagation. JOSA B 13, 1135–1145 (1996)CrossRefGoogle Scholar
  20. 20.
    Huang, Y., Li, J., Yang, W.: Interior penalty DG methods for Maxwell’s equations in dispersive media. J. Comput. Phys. 230, 4559–4570 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ji, X., Cai, W., Zhang, P.: High-order DGTD methods for dispersive Maxwell’s equations and modelling of silver nanowire coupling. Int. J. Numer. Methods Eng. 69, 308–325 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ji, X., Cai, W., Zhang, P.: Reflection/transmission characteristics of a discontinuous Galerkin method for Maxwell’s equations in dispersive inhomogeneous media. J. Comput. Lathematics Int. Edn. 26, 347 (2008)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Joseph, R.M., Hagness, S.C., Taflove, A.: Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses. Opt. Lett. 16, 1412–1414 (1991)CrossRefGoogle Scholar
  24. 24.
    Joseph, R.M., Taflove, A.: Spatial soliton deflection mechanism indicated by FD–TD Maxwell’s equations modeling. IEEE Photon. Technol. Lett. 6, 1251–1254 (1994)CrossRefGoogle Scholar
  25. 25.
    Joseph, R.M., Taflove, A.: FDTD Maxwell’s equations models for nonlinear electrodynamics and optics. IEEE Trans. Antennas Propag. 45, 364–374 (1997)CrossRefGoogle Scholar
  26. 26.
    Joseph, R.M., Taflove, A., Goorjian, P.M.: Direct time integration of Maxwell’s equations in two-dimensional dielectric waveguides for propagation and scattering of femtosecond electromagnetic solitons. Opt. Lett. 18, 491–493 (1993)CrossRefGoogle Scholar
  27. 27.
    Kashiwa, T., Fukai, I.: A treatment by the FD–TD method of the dispersive characteristics associated with electronic polarization. Microwave Opt. Technol. Lett. 3, 203–205 (1990)CrossRefGoogle Scholar
  28. 28.
    Kashiwa, T., Yoshida, N., Fukai, I.: A treatment by the finite-difference time domain method of the dispersive characteristics associated with orientational polarization. IEEE Trans. IEICE 73, 1326–1328 (1990)Google Scholar
  29. 29.
    Kelley, D.F., Luebbers, R.J.: Piecewise linear recursive convolution for dispersive media using FDTD. IEEE Trans. Antennas Propag. 44, 792–797 (1996)CrossRefGoogle Scholar
  30. 30.
    Kinsler, P., Radnor, S., Tyrrell, J., New, G.: Optical carrier wave shocking: detection and dispersion. Phys. Rev. E 75, 066603 (2007)CrossRefGoogle Scholar
  31. 31.
    Lanteri, S., Scheid, C.: Convergence of a discontinuous Galerkin scheme for the mixed time-domain Maxwell’s equations in dispersive media. IMA J. Numer. Anal. 33, 432–459 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Li, J.: Error analysis of finite element methods for 3-D Maxwell’s equations in dispersive media. J. Comput. Appl. Math. 188, 107–120 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Li, J.: Error analysis of fully discrete mixed finite element schemes for 3-D Maxwell’s equations in dispersive media. Comput. Methods Appl. Mech. Eng. 196, 3081–3094 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Li, J., Chen, Y.: Analysis of a time-domain finite element method for 3-D Maxwell’s equations in dispersive media. Comput. Methods Appl. Mech. Eng. 195, 4220–4229 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Li, J., Huang, Y.: Time-domain finite element methods for Maxwell’s equations in metamaterials, vol. 43. Springer, Berlin (2013)CrossRefzbMATHGoogle Scholar
  36. 36.
    Li, J., Shields, S.: Superconvergence analysis of Yee scheme for metamaterial Maxwell’s equations on non-uniform rectangular meshes. Numer. Math. 134, 741–781 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Luebbers, R., Hunsberger, F.P., Kunz, K.S., Standler, R.B., Schneider, M.: A frequency-dependent finite-difference time-domain formulation for dispersive materials. IEEE Trans. Electromagn. Compat. 32, 222–227 (1990)CrossRefGoogle Scholar
  38. 38.
    Luebbers, R.J., Hunsberger, F.: FDTD for Nth-order dispersive media. IEEE Trans. Antennas Propag. 40, 1297–1301 (1992)CrossRefGoogle Scholar
  39. 39.
    Monk, P., Süli, E.: A convergence analysis of Yee’s scheme on nonuniform grids. SIAM J. Numer. Anal. 31, 393–412 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Petropoulos, P.: Fourth-order accurate staggered finite difference schemes for the time-dependent Maxwell equations, in Ordinary and partial differential equations, Vol. V (Dundee, : vol. 370 of Pitman Res. Notes Math. Ser. Longman, Harlow 1997, pp. 85–107 (1996)Google Scholar
  41. 41.
    Prokopidis, K.P., Kosmidou, E.P., Tsiboukis, T.D.: An FDTD algorithm for wave propagation in dispersive media using higher-order schemes. J. Electromagn. Waves Appl. 18, 1171–1194 (2004)CrossRefGoogle Scholar
  42. 42.
    Ramadan, O.: Systematic wave-equation finite difference time domain formulations for modeling electromagnetic wave-propagation in general linear and nonlinear dispersive materials. Int. J. Mod. Phys. C 26, 1550046 (2015)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Sørensen, M.P., Webb, G.M., Brio, M., Moloney, J.V.: Kink shape solutions of the Maxwell–Lorentz system. Phys. Rev. E 71, 036602 (2005)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain method, 3rd edn. Artech House, Norwood (2005)zbMATHGoogle Scholar
  45. 45.
    Taflove, A., Oskooi, A., Johnson, S.G.: Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology. Artech House, Norwood (2013)Google Scholar
  46. 46.
    Tyrrell, J., Kinsler, P., New, G.: Pseudospectral spatial-domain: a new method for nonlinear pulse propagation in the few-cycle regime with arbitrary dispersion. J. Mod. Opt. 52, 973–986 (2005)CrossRefzbMATHGoogle Scholar
  47. 47.
    Wang, B., Xie, Z., Zhang, Z.: Error analysis of a discontinuous Galerkin method for Maxwell equations in dispersive media. J. Comput. Phys. 229, 8552–8563 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Xie, Z., Chan, C., Zhang, B.: An explicit fourth-order staggered finite-difference time domain method for Maxwell’s equations. J. Comput. Appl. Math. 147, 75–98 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Yee, K.: Numerical solution of initail boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)CrossRefzbMATHGoogle Scholar
  50. 50.
    Yefet, A., Petropoulos, P.G.: A fourth-order FD-TD scheme for electromagnetics, in Mathematical and numerical aspects of wave propagation (Santiago de Compostela, 2000), SIAM, Philadelphia, PA, pp. 883–887 (2000)Google Scholar
  51. 51.
    Yefet, A., Petropoulos, P.G.: A staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell’s equations. J. Comput. Phys. 168, 286–315 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Young, J., Gaitonde, D., Shang, J.: Toward the construction of a fourth-order difference scheme for transient EM wave simulation: staggered grid approach. IEEE Trans. Antennas Propag. 45, 1573–1580 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Young, J.L., Nelson, R.O.: A summary and systematic analysis of FDTD algorithms for linearly dispersive media. IEEE Antennas Propag. Mag. 43, 61–77 (2001)CrossRefGoogle Scholar
  54. 54.
    Young, L.: A higher order FDTD method for EM propagation in a collisionless cold plasma. IEEE Trans. Antennas Propag. 44, 1283–1289 (1992)CrossRefGoogle Scholar
  55. 55.
    Zhu, B., Chen, J., Zhong, W., Liu, Q.: A hybrid finite-element/finite-difference method with an implicit-explicit time-stepping scheme for Maxwell’s equations. Int. J. Numer. Modell. Electron. Netw. Dev. Fields 25(5–6), 607–620 (2012)CrossRefGoogle Scholar
  56. 56.
    Ziolkowski, R.W., Judkins, J.B.: Nonlinear finite-difference time-domain modeling of linear and nonlinear corrugated waveguides. JOSA B 11, 1565–1575 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vrushali A. Bokil
    • 1
  • Yingda Cheng
    • 2
  • Yan Jiang
    • 2
  • Fengyan Li
    • 3
  • Puttha Sakkaplangkul
    • 2
    Email author
  1. 1.Department of MathematicsOregon State UniversityCorvallisUSA
  2. 2.Department of MathematicsMichigan State UniversityEast LansingUSA
  3. 3.Department of Mathematical SciencesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations