Fully Computable a Posteriori Error Bounds for Hybridizable Discontinuous Galerkin Finite Element Approximations

Abstract

We derive a posteriori error estimates for the hybridizable discontinuous Galerkin (HDG) methods, including both the primal and mixed formulations, for the approximation of a linear second-order elliptic problem on conforming simplicial meshes in two and three dimensions. We obtain fully computable, constant free, a posteriori error bounds on the broken energy seminorm and the HDG energy (semi)norm of the error. The estimators are also shown to provide local lower bounds for the HDG energy (semi)norm of the error up to a constant and a higher-order data oscillation term. For the primal HDG methods and mixed HDG methods with an appropriate choice of stabilization parameter, the estimators are also shown to provide a lower bound for the broken energy seminorm of the error up to a constant and a higher-order data oscillation term. Numerical examples are given illustrating the theoretical results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Ainsworth, M.: A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements. SIAM J. Sci. Comput. 30, 189–204 (2007/2008)

  2. 2.

    Ainsworth, M.: Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42, 2320–2341 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Ainsworth, M.: A posteriori error estimation for discontinuous Galerkin finite element approximation. SIAM J. Numer. Anal. 45, 1777–1798 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Ainsworth, M.: A framework for obtaining guaranteed error bounds for finite element approximations. J. Comput. Appl. Math. 234, 2618–2632 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Ainsworth, M., Ma, X.: Non-uniform order mixed FEM approximation: implementation, post-processing, computable error bound and adaptivity. J. Comput. Phys. 231, 436–453 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Ainsworth, M., Oden, J.T.: A unified approach to a posteriori error estimation using element residual methods. Numer. Math. 65, 23–50 (1993)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics (New York). Wiley, New York (2000)

    Book  MATH  Google Scholar 

  8. 8.

    Ainsworth, M., Rankin, R.: Fully computable bounds for the error in nonconforming finite element approximations of arbitrary order on triangular elements. SIAM J. Numer. Anal. 46, 3207–3232 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Ainsworth, M., Rankin, R.: Fully computable error bounds for discontinuous Galerkin finite element approximations on meshes with an arbitrary number of levels of hanging nodes. SIAM J. Numer. Anal. 47, 4112–4141 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Ainsworth, M., Rankin, R.: Constant free error bounds for nonuniform order discontinuous Galerkin finite-element approximation on locally refined meshes with hanging nodes. IMA J. Numer. Anal. 31, 254–280 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Ainsworth, M., Rankin, R.: Technical note: a note on the selection of the penalty parameter for discontinuous Galerkin finite element schemes. Numer. Methods Partial Differ. Equ. 28, 1099–1104 (2012)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001/2002)

  13. 13.

    Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  14. 14.

    Braess, D., Pillwein, V., Schöberl, J.: Equilibrated residual error estimates are \(p\)-robust. Comput. Methods Appl. Mech. Eng. 198, 1189–1197 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Cai, Z., Zhang, S.: Robust equilibrated residual error estimator for diffusion problems: conforming elements. SIAM J. Numer. Anal. 50, 151–170 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Carstensen, C., Merdon, C.: Estimator competition for Poisson problems. J. Comput. Math. 28, 309–330 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Carstensen, C., Merdon, C.: Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem. J. Comput. Appl. Math. 249, 74–94 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Carstensen, C., Hoppe, R.H.W., Sharma, N., Warburton, T.: Adaptive hybridized interior penalty discontinuous Galerkin methods for H(curl)-elliptic problems. Numer. Math. Theory Methods Appl. 4, 13–37 (2011)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Carstensen, C., Eigel, M., Hoppe, R.H.W., Löbhard, C.: A review of unified a posteriori finite element error control. Numer. Math. Theory Methods Appl. 5, 509–558 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Chen, H., Li, J., Qiu, W.: Robust a posteriori error estimates for HDG method for convection-diffusion equations. IMA J. Numer. Anal. 36, 437–462 (2016)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Chen, H., Qiu, W., Shi, K.: A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations. Comput. Methods Appl. Mech. Eng. 333, 287–310 (2018)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Cochez-Dhondt, S., Nicaise, S.: Equilibrated error estimators for discontinuous Galerkin methods. Numer. Methods Partial Differ. Equ. 24, 1236–1252 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Cockburn, B., Zhang, W.: A posteriori error estimates for HDG methods. J. Sci. Comput. 51, 582–607 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Cockburn, B., Zhang, W.: A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 51, 676–693 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Cockburn, B., Zhang, W.: An a posteriori error estimate for the variable-degree Raviart–Thomas method. Math. Comput. 83, 1063–1082 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Cockburn, B., Nochetto, R.H., Zhang, W.: Contraction property of adaptive hybridizable discontinuous Galerkin methods. Math. Comput. 85, 1113–1141 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Dari, E., Duran, R., Padra, C., Vampa, V.: A posteriori error estimators for nonconforming finite element methods. RAIRO Modél. Math. Anal. Numér. 30, 385–400 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Destuynder, P., Métivet, B.: Explicit error bounds for a nonconforming finite element method. SIAM J. Numer. Anal. 35, 2099–2115 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Destuynder, P., Métivet, B.: Explicit error bounds in a conforming finite element method. Math. Comput. 68, 1379–1396 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Egger, H., Waluga, C.: \(hp\) analysis of a hybrid DG method for Stokes flow. IMA J. Numer. Anal. 33, 687–721 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Epshteyn, Y., Rivière, B.: Estimation of penalty parameters for symmetric interior penalty Galerkin methods. J. Comput. Appl. Math. 206, 843–872 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Ern, A., Vohralík, M.: Four closely related equilibrated flux reconstructions for nonconforming finiteelements. C. R. Math. Acad. Sci. Paris 351, 77–80 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Ern, A., Vohralík, M.: Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53, 1058–1081 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Gatica, G.N., Sequeira, F.A.: A priori and a posteriori error analyses of an augmented HDG method for a class of quasi-Newtonian Stokes flows. J. Sci. Comput. 69, 1192–1250 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Girault, V., Raviart, P.-A.: Finite element methods for Navier–Stokes equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  38. 38.

    Kelly, D.W.: The self-equilibration of residuals and complementary a posteriori error estimates in the finite element method. Int. J. Numer. Methods Eng. 20, 1491–1506 (1984)

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Kim, K.Y.: A posteriori error analysis for locally conservative mixed methods. Math. Comput. 76, 43–66 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  40. 40.

    Kim, K.Y.: A posteriori error estimators for locally conservative methods of nonlinear elliptic problems. Appl. Numer. Math. 57, 1065–1080 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  41. 41.

    Ladevèze, P., Leguillon, D.: Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal. 20, 485–509 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  42. 42.

    Lehrenfeld, C.: Hybrid Discontinuous, Galerkin methods for solving incompressible flow problems. Diploma Thesis, MathCCES/IGPM, RWTH Aachen (2010)

  43. 43.

    Luce, R., Wohlmuth, B.I.: A local a posteriori error estimator based on equilibrated fluxes. SIAM J. Numer. Anal. 42, 1394–1414 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  44. 44.

    Nicaise, S., Witowski, K., Wohlmuth, B.I.: An a posteriori error estimator for the Lamé equation based on equilibrated fluxes. IMA J. Numer. Anal. 28, 331–353 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  45. 45.

    Oikawa, I.: A hybridized discontinuous Galerkin method with reduced stabilization. J. Sci. Comput. 65, 327–340 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  46. 46.

    Schöberl, J.: C++11 Implementation of Finite Elements in NGSolve, 2014. ASC Report 30/2014, Vienna University of Technology, Institute for Analysis and Scientific Computing (2014)

  47. 47.

    Schöberl, J.: NETGEN an advancing front 2d/3d-mesh generator based on abstract rules. Comput. Vis. Sci. 1, 41–52 (1997)

    Article  MATH  Google Scholar 

  48. 48.

    Shahbazi, K.: An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205, 401–407 (2005)

    Article  MATH  Google Scholar 

  49. 49.

    Shewchuk, J.: What is a good linear finite element? Interpolation, conditioning, anisotropy and quality measures. Tech. report, Department of Computer Science, University of California, Berkeley (2003)

  50. 50.

    Verfürth, R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, Chichester (1996)

    MATH  Google Scholar 

  51. 51.

    Vohralík, M.: A posteriori error estimation in the conforming finite element method based on its local conservativity and using local minimization. C. R. Math. Acad. Sci. Paris 346, 687–690 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  52. 52.

    Warburton, T., Hesthaven, J.S.: On the constants in \(hp\)-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192, 2765–2773 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  53. 53.

    Zaglmayr, S.: High order finite element methods for electromagnetic field computation. PhD thesis, Johannes Kepler Universit ät Linz, Linz (2006)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guosheng Fu.

Additional information

First author gratefully acknowledges the partial support of this work under AFOSR Contract FA9550-12-1-0399.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ainsworth, M., Fu, G. Fully Computable a Posteriori Error Bounds for Hybridizable Discontinuous Galerkin Finite Element Approximations. J Sci Comput 77, 443–466 (2018). https://doi.org/10.1007/s10915-018-0715-9

Download citation

Keywords

  • HDG
  • A posteriori error analysis
  • Computable error bounds

Mathematics Subject Classification

  • 65N30
  • 65Y20
  • 65D17
  • 68U07