Skip to main content

On the Conservation of Fractional Nonlinear Schrödinger Equation’s Invariants by the Local Discontinuous Galerkin Method


Using the primal formulation of the Local Discontinuous Galerkin (LDG) method, discrete analogues of the energy and the Hamiltonian of a general class of fractional nonlinear Schrödinger equation are shown to be conserved for two stabilized version of the method. Accuracy of these invariants is numerically studied with respect to the stabilization parameter and two different projection operators applied to the initial conditions. The fully discrete problem is analyzed for two implicit time step schemes: the midpoint and the modified Crank–Nicolson; and the explicit circularly exact Leapfrog scheme. Stability conditions for the Leapfrog scheme and a stabilized version of the LDG method applied to the fractional linear Schrödinger equation are derived using a von Neumann stability analysis. A series of numerical experiments with different nonlinear potentials are presented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    Aboelenen, T.: A high-order nodal discontinuous Galerkin method for nonlinear fractional Schrödinger type equations. Commun. Nonlinear Sci. Numer. Simul. 54, 428–452 (2018)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Ardila, A.: Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity. Nonlinear Anal. 155, 52–64 (2017)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bhrawy, A.H., Zaky, M.A.: Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations. Computers & Mathematics with Applications 73(6), 1100–1117 (2017). (Advances in Fractional Differential Equations (IV): Time-fractional PDEs)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bhrawy, A.H., Zaky, M.A.: An improved collocation method for multi-dimensional spacetime variable-order fractional Schrödinger equations. Appl. Numer. Math. 111, 197–218 (2017)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Castillo, P.: An optimal error estimate for the local discontinuous Galerkin method. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications, Volume 11 of Lecture Notes in Computational Science and Engineering, pp. 285–290. Springer, Berlin (2000)

    Chapter  Google Scholar 

  8. 8.

    Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2000)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Castillo, P., Cockburn, B., Schötzau, D., Schwab, Ch.: An optimal a priori error estimate for the \(hp\)-version of the local discontinuous Galerkin method for convection-diffusion problems. Math. Comput. 71(238), 455–478 (2001)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Cheng, Y., Shu, C.W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699–730 (2008)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    MathSciNet  Article  Google Scholar 

  12. 12.

    D’Avenia, P., Squassina, M., Zenari, M.: Fractional logarithmic Schrödinger equations. Math. Methods Appl. Sci. 38(18), 5207–5216 (2015)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Delfour, M., Fortin, M., Payré, G.: Finite-difference solutions of a non-linear Schrödinger equation. J. Comput. Phys. 44(2), 277–288 (1981)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Deng, W.H.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2008)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Deng, W.H., Hesthaven, J.S.: Local Discontinuous Galerkin methods for fractional diffusion equations. ESAIM: M2AN 47(6), 1845–1864 (2013)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Griffiths, D.F., Mitchell, A.R., Morris, JLi: A numerical study of the nonlinear Schrödinger equation. Comput. Methods Appl. Mech. Eng. 45(1), 177–215 (1984)

    Article  Google Scholar 

  17. 17.

    Guo, B., Han, Y., Xin, J.: Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 204(1), 468–477 (2008)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Guo, X., Xu, M.: Some physical applications of fractional Schrödinger equation. J. Math. Phys. 47(8), 082104 (2006)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Herbst, B.M., Morris, JLi, Mitchell, A.R.: Numerical experience with the nonlinear Schrödinger equation. J. Comput. Phys. 60, 282–305 (1985)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Klein, C., Sparber, C., Markowich, P.: Numerical study of fractional nonlinear Schrödinger equations. Proc. R. Soc. A 470, 20140364 (2014)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62(3), 3135 (2000)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Li, M., Gu, X.M., Huang, C., Fei, M., Zhang, G.: A fast linearized conservative finite element method for the strongly coupled nonlinear fractional equations. J. Comput. Phys. 358(1), 256–282 (2018)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Li, M., Huang, C., Wang, P.: Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer. Algorithms 74(2), 499–525 (2017)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic press, Cambridge (1998)

    MATH  Google Scholar 

  25. 25.

    Ran, M., Zhang, C.: A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrödinger equations. Commun. Nonlinear Sci. Numer. Simul. 41, 64–83 (2016)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Sanz-Serna, J.M.: Methods for the numerical solution of the nonlinear Schrödinger equation. Math. Comput. 43(167), 21–27 (1984)

    Article  Google Scholar 

  27. 27.

    Sanz-Serna, J.M., Manoranjan, V.S.: A method for the integration in time of certain partial differential equations. J. Comput. Phys. 52(2), 273–289 (1983)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Sanz-Serna, J.M., Verwer, J.G.: Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation. IMA J. Numer. Anal. 6, 25–42 (1986)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Shabat, A., Zakharov, V.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34(1), 62 (1972)

    MathSciNet  Google Scholar 

  30. 30.

    Strauss, W., Vazquez, L.: Numerical solution of a nonlinear Klein–Gordon equation. J. Comput. Phys. 28(2), 271–278 (1978)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation, Volume 139 of Applied Mathematical Sciences. Springer, Berlin (1999)

    MATH  Google Scholar 

  32. 32.

    Verwer, J.G., Dekker, K.: Step by step stability in the numerical solution of partial differential equations. Technical Report 161-83, Centre for Mathematics and Computer Science, Amsterdam (1983)

  33. 33.

    Wang, D., Xiao, A., Yang, W.: Crank–Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative. J. Comput. Phys. 242(1), 670–681 (2013)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Wang, P., Huang, C.: An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys. 293, 238–251 (2015)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Wang, P., Huang, C.: Split-step alternating direction implicit difference scheme for the fractional Schrödinger equation in two dimensions. Comput. Math. Appl. 71(5), 1114–1128 (2016)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Wei, L., Zhang, X., Kumar, S., Yildirim, A.: A numerical study based on an implicit fully discrete local discontinuous galerkin method for the time-fractional coupled Schrödinger system. Comput. Math. Appl. 64(8), 2603–2615 (2012)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Weideman, J.A.C., Herbst, B.M.: Split-step alternating direction implicit difference scheme for the fractional schrödinger equation in two dimensions. SIAM J. Numer. Anal. 23(3), 485–507 (1986)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Xu, Q., Hesthaven, J.S.: Discontinuous Galerkin method for fractional convection-diffusion equations. SIAM J. Numer. Anal. 52(1), 405–423 (2014)

    MathSciNet  Article  Google Scholar 

  39. 39.

    Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205(1), 72–97 (2005)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Xu, Y., Shu, C.W.: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50(1), 79–104 (2012)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Zhang, H., Hu, Q.: Existence of the global solution for fractional logarithmic Schrödinger equation. Comput. Math. Appl. 75(1), 161–169 (2018)

    MathSciNet  Article  Google Scholar 

Download references


We kindly thank the anonymous reviewers for their valuable suggestions.

Author information



Corresponding author

Correspondence to P. Castillo.

Additional information

Dedicated to Prof. Bernardo Cockburn and Prof. Chi-Wang Shu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castillo, P., Gómez, S. On the Conservation of Fractional Nonlinear Schrödinger Equation’s Invariants by the Local Discontinuous Galerkin Method. J Sci Comput 77, 1444–1467 (2018).

Download citation


  • Fractional nonlinear Schrödinger equation (FNLS)
  • Local discontinuous Galerkin (LDG)
  • Energy and Hamiltonian conservation
  • CFL

Mathematics Subject Classification

  • 65M12
  • 65M20
  • 65M60