Skip to main content
Log in

Optimization with Respect to Order in a Fractional Diffusion Model: Analysis, Approximation and Algorithmic Aspects

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider an identification (inverse) problem, where the state \({\mathsf {u}}\) is governed by a fractional elliptic equation and the unknown variable corresponds to the order \(s \in (0,1)\) of the underlying operator. We study the existence of an optimal pair \(({\bar{s}}, {{\bar{{\mathsf {u}}}}})\) and provide sufficient conditions for its local uniqueness. We develop semi-discrete and fully discrete algorithms to approximate the solutions to our identification problem and provide a convergence analysis. We present numerical illustrations that confirm and extend our theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces, Pure and Applied Mathematics, vol. 65. Academic Press [A Subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1975)

    Google Scholar 

  2. Antil, H., Otárola, E.: A FEM for an optimal control problem of fractional powers of elliptic operators. SIAM J. Control Optim. 53(6), 3432–3456 (2015). https://doi.org/10.1137/140975061

    Article  MathSciNet  MATH  Google Scholar 

  3. Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224(5), 2052–2093 (2010). https://doi.org/10.1016/j.aim.2010.01.025

    Article  MathSciNet  MATH  Google Scholar 

  4. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007). https://doi.org/10.1080/03605300600987306

    Article  MathSciNet  MATH  Google Scholar 

  5. Caffarelli, L., Stinga, P.: Fractional elliptic equations, Caccioppoli estimates and regularity. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(3), 767–807 (2016). https://doi.org/10.1016/j.anihpc.2015.01.004

    Article  MathSciNet  MATH  Google Scholar 

  6. Capella, A., Dávila, J., Dupaigne, L., Sire, Y.: Regularity of radial extremal solutions for some non-local semilinear equations. Commun. Partial Differ. Equ. 36(8), 1353–1384 (2011). https://doi.org/10.1080/03605302.2011.562954

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, L.: iFEM: an integrated finite element methods package in MATLAB. Technical Report, University of California at Irvine, Tech. rep. (2009)

  8. Deckelnick, K., Hinze, M.: Convergence and error analysis of a numerical method for the identification of matrix parameters in elliptic PDEs. Inverse Probl. 28(11), 115015 (2012). https://doi.org/10.1088/0266-5611/28/11/115015

    Article  MathSciNet  MATH  Google Scholar 

  9. Nochetto, R., Otárola, E., Salgado, A.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 733–791 (2015). https://doi.org/10.1007/s10208-014-9208-x

    Article  MathSciNet  MATH  Google Scholar 

  10. Nochetto, R., Otárola, E., Salgado, A.: A PDE approach to space–time fractional parabolic problems. SIAM J. Numer. Anal. 54(2), 848–873 (2016). https://doi.org/10.1137/14096308X

    Article  MathSciNet  MATH  Google Scholar 

  11. Otárola, E.: A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains. ESAIM Math. Model. Numer. Anal. 51(4), 1473–1500 (2017). https://doi.org/10.1051/m2an/2016065

    MathSciNet  MATH  Google Scholar 

  12. Sprekels, J., Valdinoci, E.: A new type of identification problems: optimizing the fractional order in a nonlocal evolution equation. SIAM J. Control Optim. 55(1), 70–93 (2017). https://doi.org/10.1137/16M105575X

    Article  MathSciNet  MATH  Google Scholar 

  13. Stinga, P., Torrea, J.: Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Equ. 35(11), 2092–2122 (2010). https://doi.org/10.1080/03605301003735680

    Article  MathSciNet  MATH  Google Scholar 

  14. Tröltzsch, F.: Optimal Control of Partial Differential Equations, Graduate Studies in Mathematics, Theory, Methods and Applications, vol. 112. American Mathematical Society, Providence, RI (2010). https://doi.org/10.1090/gsm/112. (Translated from the 2005 German original by Jürgen Sprekels)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abner J. Salgado.

Additional information

Harbir Antil has been supported in part by NSF Grant DMS-1521590. Enrique Otárola has been supported in part by CONICYT through FONDECYT Project 3160201. Abner J. Salgado has been supported in part by NSF Grants DMS-1418784 and DMS-1720213.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antil, H., Otárola, E. & Salgado, A.J. Optimization with Respect to Order in a Fractional Diffusion Model: Analysis, Approximation and Algorithmic Aspects. J Sci Comput 77, 204–224 (2018). https://doi.org/10.1007/s10915-018-0703-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0703-0

Keywords

Mathematics Subject Classification

Navigation