Advertisement

Journal of Scientific Computing

, Volume 77, Issue 1, pp 129–153 | Cite as

Computing the Matrix Mittag-Leffler Function with Applications to Fractional Calculus

  • Roberto Garrappa
  • Marina Popolizio
Article

Abstract

The computation of the Mittag-Leffler (ML) function with matrix arguments, and some applications in fractional calculus, are discussed. In general the evaluation of a scalar function in matrix arguments may require the computation of derivatives of possible high order depending on the matrix spectrum. Regarding the ML function, the numerical computation of its derivatives of arbitrary order is a completely unexplored topic; in this paper we address this issue and three different methods are tailored and investigated. The methods are combined together with an original derivatives balancing technique in order to devise an algorithm capable of providing high accuracy. The conditioning of the evaluation of matrix ML functions is also studied. The numerical experiments presented in the paper show that the proposed algorithm provides high accuracy, very often close to the machine precision.

Keywords

Mittag-Leffler function Matrix function Derivatives of the Mittag-Leffler function Fractional calculus Conditioning 

References

  1. 1.
    Al-Mohy, A.H., Higham, N.J.: The complex step approximation to the Fréchet derivative of a matrix function. Numer. Algorithms 53(1), 113–148 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Balachandran, K., Govindaraj, V., Ortigueira, M., Rivero, M., Trujillo, J.: Observability and controllability of fractional linear dynamical systems. IFAC Proc. Vol. 46(1), 893–898 (2013)CrossRefGoogle Scholar
  3. 3.
    Barrett, W.W., Jarvis, T.J.: Spectral properties of a matrix of Redheffer. Linear Algebra Appl. 162/164, 673–683 (1992). Directions in matrix theory (Auburn, AL, 1990)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bornemann, F., Laurie, D., Wagon, S., Waldvogel, J.: The SIAM 100-digit challenge. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2004)CrossRefzbMATHGoogle Scholar
  5. 5.
    Colombaro, I., Giusti, A., Vitali, S.: Storage and dissipation of energy in Prabhakar viscoelasticity. Mathematics 6(2), 15 (2018).  https://doi.org/10.3390/math6020015 CrossRefzbMATHGoogle Scholar
  6. 6.
    Davies, P.I., Higham, N.J.: A Schur-Parlett algorithm for computing matrix functions. SIAM J. Matrix Anal. Appl. 25(2), 464–485 (2003). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Del Buono, N., Lopez, L., Politi, T.: Computation of functions of Hamiltonian and skew-symmetric matrices. Math. Comp. Simul. 79(4), 1284–1297 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dieci, L., Papini, A.: Conditioning and Padé approximation of the logarithm of a matrix. SIAM J. Matrix Anal. Appl. 21(3), 913–930 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Diethelm, K.: The analysis of fractional differential equations, Lecture Notes in Mathematics, vol. 2004. Springer, Berlin (2010)Google Scholar
  10. 10.
    Diethelm, K., Ford, N.J.: Numerical solution of the Bagley-Torvik equation. BIT 42(3), 490–507 (2002)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Diethelm, K., Ford, N.J.: Multi-order fractional differential equations and their numerical solution. Appl. Math. Comput. 154(3), 621–640 (2004)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Diethelm, K., Luchko, Y.: Numerical solution of linear multi-term initial value problems of fractional order. J. Comput. Anal. Appl. 6(3), 243–263 (2004)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Dixon, J.: On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with nonsmooth solutions. BIT 25(4), 624–634 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Džrbašjan [Djrbashian], M.M.: Harmonic analysis and boundary value problems in the complex domain, Operator Theory: Advances and Applications, vol. 65. Birkhäuser Verlag, Basel (1993). Translated from the manuscript by H. M. Jerbashian and A. M. Jerbashian [A. M. Dzhrbashyan]Google Scholar
  15. 15.
    Frommer, A., Simoncini, V.: Matrix functions. In: Model order reduction: theory, research aspects and applications, Math. Ind., vol. 13, pp. 275–303. Springer, Berlin (2008)Google Scholar
  16. 16.
    Garra, R., Garrappa, R.: The Prabhakar or three parameter Mittag-Leffler function: theory and application. Commun. Nonlinear Sci. Numer. Simul. 56, 314–329 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Garrappa, R.: Exponential integrators for time-fractional partial differential equations. Eur. Phys. J. Spec. Top. 222(8), 1915–1927 (2013)CrossRefGoogle Scholar
  18. 18.
    Garrappa, R.: Numerical evaluation of two and three parameter Mittag-Leffler functions. SIAM J. Numer. Anal. 53(3), 1350–1369 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Garrappa, R., Mainardi, F., Maione, G.: Models of dielectric relaxation based on completely monotone functions. Fract. Calc. Appl. Anal. 19(5), 1105–1160 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Garrappa, R., Moret, I., Popolizio, M.: Solving the time-fractional Schrödinger equation by Krylov projection methods. J. Comput. Phys. 293, 115–134 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Garrappa, R., Moret, I., Popolizio, M.: On the time-fractional Schrödinger equation: theoretical analysis and numerical solution by matrix Mittag-Leffler functions. Comput. Math. Appl. 74(5), 977–992 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Garrappa, R., Popolizio, M.: On the use of matrix functions for fractional partial differential equations. Math. Comput. Simul. 81(5), 1045–1056 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Garrappa, R., Popolizio, M.: Evaluation of generalized Mittag-Leffler functions on the real line. Adv. Comput. Math. 39(1), 205–225 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Giusti, A., Colombaro, I.: Prabhakar-like fractional viscoelasticity. Commun. Nonlinear Sci. Numer. Simul. 56, 138–143 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD (1996)Google Scholar
  26. 26.
    Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.: Mittag-Leffler Functions. Theory and Applications. Springer Monographs in Mathematics. Springer, Berlin (2014)zbMATHGoogle Scholar
  27. 27.
    Gorenflo, R., Loutchko, J., Luchko, Y.: Computation of the Mittag-Leffler function \(E_{\alpha,\beta }(z)\) and its derivative. Fract. Calc. Appl. Anal. 5(4), 491–518 (2002)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Fractals and fractional calculus in continuum mechanics (Udine, 1996), CISM Courses and Lect., vol. 378, pp. 223–276. Springer, Vienna (1997)Google Scholar
  29. 29.
    Hale, N., Higham, N.J., Trefethen, L.N.: Computing \({ A}^\alpha, \log ({ A})\), and related matrix functions by contour integrals. SIAM J. Numer. Anal. 46(5), 2505–2523 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag-Leffler functions and their applications. J. Appl. Math. pp. Art. ID 298,628, 51 (2011)Google Scholar
  31. 31.
    Henrici, P.: Applied and Computational Complex Analysis, vol. 1. Wiley, New York (1974)zbMATHGoogle Scholar
  32. 32.
    Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002)CrossRefzbMATHGoogle Scholar
  33. 33.
    Higham, N.J.: Functions of Matrices. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2008)CrossRefzbMATHGoogle Scholar
  34. 34.
    Higham, N.J., Al-Mohy, A.H.: Computing matrix functions. Acta Numer. 19, 159–208 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Liemert, A., Sandev, T., Kantz, H.: Generalized Langevin equation with tempered memory kernel. Phys. A 466, 356–369 (2017)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Lino, P., Maione, G.: Design and simulation of fractional-order controllers of injection in CNG engines. IFAC Proc. Vol. (IFAC-PapersOnline), 582–587 (2013)Google Scholar
  37. 37.
    Lino, P., Maione, G.: Fractional order control of the injection system in a CNG engine. In: 2013 European Control Conference, ECC 2013, 3997–4002 (2013)Google Scholar
  38. 38.
    Luchko, Y., Gorenflo, R.: An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnam. 24(2), 207–233 (1999)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Mainardi, F., Mura, A., Pagnini, G.: The \(M\)-Wright function in time-fractional diffusion processes: a tutorial survey. Int. J. Differ. Equ. pp. Art. ID 104,505, 29 (2010)Google Scholar
  40. 40.
    Matignon, D., d’Andréa Novel, B.: Some results on controllability and observability of finite-dimensional fractional differential systems. In: Computational Engineering in Systems Applications, Proceedings of the IMACS, IEEE SMC Conference, Lille, France, pp. 952–956 (1996)Google Scholar
  41. 41.
    Matychyn, I., Onyshchenko, V.: Time-optimal control of fractional-order linear systems. Fract. Calc. Appl. Anal. 18(3), 687–696 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Mittag-Leffler, M.G.: Sopra la funzione \({E}_{\alpha }(x)\). Rend. Accad. Lincei 13(5), 3–5 (1904)zbMATHGoogle Scholar
  43. 43.
    Mittag-Leffler, M.G.: Sur la représentation analytique d’une branche uniforme d’une fonction monogène - cinquième note. Acta Math. 29(1), 101–181 (1905)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Moret, I., Novati, P.: On the convergence of Krylov subspace methods for matrix Mittag-Leffler functions. SIAM J. Numer. Anal. 49(5), 2144–2164 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    de Oliveira, D.S., Capelas de Oliveira, E., Deif, S.: On a sum with a three-parameter Mittag-Leffler function. Integral Transforms Spec. Funct. 27(8), 639–652 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Popolizio, M.: Numerical solution of multiterm fractional differential equations using the matrix Mittag-Leffler functions. Mathematics 1(6), 7 (2018)CrossRefzbMATHGoogle Scholar
  47. 47.
    Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19(1), 7–15 (1971)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Rodrigo, M.R.: On fractional matrix exponentials and their explicit calculation. J. Differ. Equ. 261(7), 4223–4243 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Rogosin, S.: The role of the Mittag-Leffler function in fractional modeling. Mathematics 3(2), 368–381 (2015)CrossRefzbMATHGoogle Scholar
  50. 50.
    Sandev, T.: Generalized Langevin equation and the Prabhakar derivative. Mathematics 5(4), 66 (2017)CrossRefzbMATHGoogle Scholar
  51. 51.
    Stanislavsky, A., Weron, K.: Numerical scheme for calculating of the fractional two-power relaxation laws in time-domain of measurements. Comput. Phys. Commun. 183(2), 320–323 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Tomovski, Ž., Pogány, T.K., Srivastava, H.M.: Laplace type integral expressions for a certain three-parameter family of generalized Mittag-Leffler functions with applications involving complete monotonicity. J. Franklin Inst. 351(12), 5437–5454 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56(3), 385–458 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Valério, D., Tenreiro Machado, J.: On the numerical computation of the Mittag-Leffler function. Commun. Nonlinear Sci. Numer. Simul. 19(10), 3419–3424 (2014)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Weideman, J.A.C., Trefethen, L.N.: Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comp. 76(259), 1341–1356 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Zeng, C., Chen, Y.: Global Padé approximations of the generalized Mittag-Leffler function and its inverse. Fract. Calc. Appl. Anal. 18(6), 1492–1506 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Università degli Studi di Bari, Dipartimento di MatematicaBariItaly
  2. 2.Università del Salento, Dipartimento di Matematica e Fisica “Ennio De Giorgi”LecceItaly

Personalised recommendations