Advertisement

Journal of Scientific Computing

, Volume 77, Issue 1, pp 101–128

# MultiGrid Preconditioners for Mixed Finite Element Methods of the Vector Laplacian

• Long Chen
• Yongke Wu
• Lin Zhong
• Jie Zhou
Article

## Abstract

Due to the indefiniteness and poor spectral properties, the discretized linear algebraic system of the vector Laplacian by mixed finite element methods is hard to solve. A block diagonal preconditioner has been developed and shown to be an effective preconditioner by Arnold et al. (Acta Numer 15:1–155, 2006). The purpose of this paper is to propose alternative and effective block diagonal and approximate block factorization preconditioners for solving these saddle point systems. A variable V-cycle multigrid method with the standard point-wise Gauss–Seidel smoother is proved to be a good preconditioner for the discrete vector Laplacian operator. The major benefit of our approach is that the point-wise Gauss–Seidel smoother is more algebraic and can be easily implemented as a black-box smoother. This multigrid solver will be further used to build preconditioners for the saddle point systems of the vector Laplacian. Furthermore it is shown that Maxwell’s equations with the divergent free constraint can be decoupled into one vector Laplacian and one scalar Laplacian equation.

## Keywords

Saddle point system Multigrid methods Mixed finite elements Vector Laplacian Maxwell equations

## Mathematics Subject Classification

65N55 65F10 65N22 65N30

## References

1. 1.
Arnold, D., Falk, R., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)
2. 2.
Arnold, D.N., Falk, R.S., Winther, R.: Multigrid in H(div) and H(curl). Numer. Math. 85, 197–218 (2000)
3. 3.
Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. 47(2), 281–354 (2010)
4. 4.
Bramble, J.H., Pasciak, J.E., Xu, J.: The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms. Math. Comput. 56, 1–34 (1991)
5. 5.
Bramble, J.H., Pasciak, J.E.: The analysis of smoothers for multigrid algorithms. Math. Comput. 58, 467–488 (1992)
6. 6.
Brezzi, F., Douglas, J., Duran, R., Fortin, M.: Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51, 237–250 (1987)
7. 7.
Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47(2), 217–235 (1985)
8. 8.
Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)
9. 9.
Chen, L.: $$i$$FEM: an integrated finite element methods package in matlab, Technical report, University of California at Irvine (2009)Google Scholar
10. 10.
Chen, L., Wang, M., Zhong, L.: Convergence Analysis of Triangular MAC Schemes for Two Dimensional Stokes Equations. J. Sci. Comput.
11. 11.
Chen, L., Wu, Y.: Convergence of adaptive mixed finite element methods for the Hodge Laplacian equations: without harmonic forms. SIAM J. Numer. Anal. 55(6), 2905–2929 (2017)
12. 12.
Chen, L., Wu, Y.: Convergence Analysis for A Class of Iterative Methods for Solving Saddle Point Systems, arXiv:1710.03409 [math.NA]
13. 13.
Chen, J., Xu, Y., Zou, J.: An adaptive inverse iteration for Maxwell eigenvalue problem based on edge elements. J. Comput. Phys. 229(7), 2649–2658 (2010)
14. 14.
Ciarlet, P., Wu, J,H., Zou, J.: Edge element methods for maxwells equations with strong convergence for gauss laws. SIAM J. Numer. Anal. 53(4), 2350–2372 (2015)Google Scholar
15. 15.
Elman, H. C.: Iterative Methods for Large Sparse Non-Symmetric Systems of Linear Equations, Ph.D. thesis, Yale University, New Haven, CT (1982)Google Scholar
16. 16.
Fortin, M., Glowinski, R.: Augmented Lagrangian Methods, Applications to the Numerical Solution of Boundary Value Problems. North-Holland Publishing Co., Amsterdam (1983)
17. 17.
Girault, V., Raviart, P.: Finite Element Methods for Navier–Stokes Equations. Springer, New York (1986)
18. 18.
Hiptmair, R.: Multigrid method for H(div) in three dimensions. Electron. Trans. Numer. Anal. 6, 133–152 (1997)
19. 19.
Hiptmair, R.: Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36(1), 204–225 (1999)
20. 20.
Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)
21. 21.
Hiptmair, R., Xu, J.: Nodal auxiliary space preconditioning in H(curl) and H(div) spaces. SIAM J. Numer. Anal. 45(6), 2483–2509 (2007)
22. 22.
Loghin, D., Wathen, A.J.: Analysis of preconditioners for saddle-point problems. SIAM J. Sci. Comput. 25, 20292049 (2004)
23. 23.
Mardal, K.A., Winther, R.: Uniform preconditioners for the time dependent Stokes problem. Numer. Math. 98, 305–327 (2004)
24. 24.
Monk, P.: Analysis of a finite element method for Maxwell’s equations. SIAM J. Numer. Anal. 29, 714–729 (1992)
25. 25.
Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)
26. 26.
Nédélec, J.C.: Mixed finite elements in $$R^{3}$$. Numer. Math. 35, 315–341 (1980)
27. 27.
Nédélec, J.C.: A new family of mixed finite elements in $$R^{3}$$. Numer. Math. 50, 57–81 (1986)
28. 28.
Olshanskii, Maxim A., Tyrtyshnikov, Eugene E.: Iterative Methods for Linear Systems Theory and Applications Society for Industrial and Applied Mathematics, Philadelphia (2014)Google Scholar
29. 29.
Raviart, P.A., Thomas, J.: A mixed finite element method fo 2-nd order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical aspects of the Finite Elements Method. Lectures Notes in Math, pp. 292–315. Springer, Berlin (1977)Google Scholar
30. 30.
Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS, Boston (1996)
31. 31.
Zhou, J., Hu, X., Zhong, L., Shu, S., Chen, L.: Two-grid methods for maxwell eigenvalue problem. SIAM J. Numer. Anal. 52(4), 2027–2047 (2014)

## Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

## Authors and Affiliations

1. 1.Department of MathematicsUniversity of California at IrvineIrvineUSA
2. 2.Beijing Institute for Scientific and Engineering ComputingBeijing University of TechnologyBeijingChina
3. 3.School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduChina
4. 4.School of Mathematical and Computational SciencesXiangtan UniversityXiangtanChina