A Fully Discrete Fast Fourier–Galerkin Method Solving a Boundary Integral Equation for the Biharmonic Equation

Article
  • 46 Downloads

Abstract

We develop a fully discrete fast Fourier–Galerkin method for solving a boundary integral equation for the biharmonic equation by introducing a quadrature scheme for computing the integrals of non-smooth functions that appear in the Fourier–Galerkin method. A key step in developing the fully discrete fast Fourier–Galerkin method is the design of a fast quadrature scheme for computing the Fourier coefficients of the non-smooth kernel function involved in the boundary integral equation. We prove that with the proposed quadrature algorithm, the total number of additions and multiplications used in generating the compressed coefficient matrix for the proposed method is quasi-linear (linear with a logarithmic factor), and the resulting numerical solution of the equation preserves the optimal convergence order. Numerical examples are presented to demonstrate the approximation accuracy and computational efficiency of the proposed method.

Keywords

Biharmonic equation Boundary integral equation Fast Fourier–Galerkin method 

Mathematics Subject Classification

31A30 74S25 45E05 

References

  1. 1.
    Apel, T., Sandig, A.-M., Whiteman, J.R.: Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19, 63–85 (1996)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Atkinson, K.: The Numerical Solution of Integral Equations of Second Kind. Cambridge University Press, Cambridge (1997)CrossRefMATHGoogle Scholar
  3. 3.
    Behrens, E.M., Guzmn, J.: A mixed method for the biharmonic problem based on a system of first-order equations. SIAM J. Numer. Anal. 49, 789–817 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ben-Artzi, M., Chorev, I., Croisille, J.P., Fishelov, D.: A compact difference scheme for the biharmonic equation in planar irregular domains. SIAM J. Numer. Anal. 47, 3087–3108 (2009)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ben-Artzi, M., Croisille, J.-P., Fishelov, D.: A fast direct solver for the biharmonic problem in a rectangular grid. SIAM J. Sci. Comput. 31, 303–333 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bialecki, B.: A fast solver for the orthogonal spline collocation solution of the biharmonic dirichlet problem on rectangles. J. Comput. Phys. 191, 601–621 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Babuska, I., Kellogg, R., Pitkaranta, J.: Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math. 33, 447–471 (1979)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bacuta, C., Nistor, V., Zikatanov, L.: Improving the rate of convergence of high order finite elements on polygons and domains with cusps. Numer. Math. 100, 165–184 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bailey, D., Swarztrauber, P.: The fractional Fourier transform and applications. SIAM Rev. 33, 389–404 (1991)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Borm, S., Sauter, S.: BEM with linear complexity for the classical boundary integral operators. Math. Comput. 74, 1139–1177 (2005)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Brenner, S.C.: An optimal-order nonconforming multigrid method for the biharmonic equation. SIAM J. Numer. Anal. 26, 1124–1138 (1989)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Brenner, S., Cui, J., Gudi, T., Sung, L.-Y.: Multigrid algorithms for symmetric discontinuous Galerkin methods on graded meshes. Numer. Math. 119, 21–47 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Brunner, H.: The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math. Comput. 45, 417–437 (1985)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Cai, H., Xu, Y.: A fast Fourier–Galerkin method for solving singualr boundary integral equations. SIAM J. Numer. Anal. 46, 1965–1984 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Chan, R.H., Delillo, T.K., Horn, M.A.: The numerical solution of the biharmonic equation by conformal mapping. SIAM J. Sci. Comput. 18, 1571–1582 (1997)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Chan, R.H., DeLillo, T.K., Horn, M.A.: Superlinear convergence estimates for a conjugate gradient method for the biharmonic equation. SIAM J. Sci. Comput. 19, 139–147 (1998)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Chan, R.H., Sun, H.-W., Ng, W.-F.: Circulant preconditioners for ill-conditioned boundary integral equations from potential equations. Int. J. Numer. Methods Eng. 43, 1505–1521 (1998)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Chen, G., Li, Z., Lin, P.: A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible stokes flow. Adv. Comput. Math. 29, 113–133 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Chen, Z., Micchelli, C.A., Xu, Y.: A construction of interpolating wavelets on invariant sets. Math. Comput. 68, 1569–1587 (1999)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Chen, Z., Micchelli, C.A., Xu, Y.: Multiscale Methods for Fredholm Integral Equations. Cambridge University Press, Cambridge (2015)CrossRefMATHGoogle Scholar
  22. 22.
    Chen, Z., Wu, B., Xu, Y.: Multilevel augmentation methods for solving operator equations. Numer. Math. J. Chin. Univ. 14, 31–55 (2005)MathSciNetMATHGoogle Scholar
  23. 23.
    Cheng, Q., Tang, T., Teng, Z.: A fast numerical method for integral equations of the first kind with logorithmic kernel using mesh grading. J. Comput. Math. 22, 287–298 (2004)MathSciNetGoogle Scholar
  24. 24.
    Chien, D., Atkinson, K.: A discrete Galerkin method for a hypersingular boundary integral equations. IMA J. Numer. Anal. 17, 463–478 (1997)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Davini, C., Pitacco, I.: An unconstrained mixed method for the biharmonic problem. SIAM J. Numer. Anal. 38, 820–836 (2000)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    DeVore, R., Petrushev, P., Temlyakov, V.: Multivariate trigonometric approximation with frequencies from the hyperpolic cross. Mat. Zametki 56, 36–63 (1994)MATHGoogle Scholar
  28. 28.
    Döhler, M., Kunis, K., Potts, D.: Nonequispaced hyperbolic cross fast Fourier transform. SIAM J. Numer. Anal. 47, 4415–4428 (2010)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Ehrlich, L.W., Gupta, M.M.: Some difference schemes for the biharmonic equation. SIAM J. Numer. Anal. 12, 773–790 (1975)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Eymard, R., Gallouët, T., Herbin, R., Linke, A.: Finite volume schemes for the biharmonic problem on general meshes. Math. Comput. 81, 2019–2048 (2012)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Frank, K., Heinrich, S., Pereverzev, S.: Information complexity of multivariate Fredholm integral equations in sobolev classes. J. Complex. 12, 17–34 (1996)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Gradinaru, V.: Strang splitting for the time dependent Schrödinger equation on sparse grids. SIAM J. Numer. Anal. 46, 103–123 (2007)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Gómez-Polanco, A., Guevara-Jordan, J.M., Molina, B.: A mimetic iterative scheme for solving biharmonic equations. Math. Comput. Model. 57, 2132–2139 (2013)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Greenbaum, A., Greengard, L., Mayo, A.: On the numerical solution of the biharmonic equation in the plane. Phys. D Nonlinear Phenom. 60, 216–225 (1992)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Gudi, T., Nataraj, N., Pani, A.K.: Mixed discontinuous Galerkin finite element method for the biharmonic equation. J. Sci. Comput. 37, 139–161 (2008)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Hanisch, M.: Multigrid preconditioning for the biharmonic Dirichlet problem. SIAM J. Numer. Anal. 30, 184–214 (1998)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Jeon, Y.: New boundary element formulas for the biharmonic equation. Adv. Comput. Math. 9, 97–115 (1998)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Jeon, Y.: New indirect scalar boundary integral equation formulas for the biharmonic equation. J. Comput. Appl. Math. 135, 313–324 (2001)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Jiang, Y., Wang, B., Xu, Y.: A fast Fourier–Galerkin method solving a boundary integral equation for the biharmonic equation. SIAM J. Numer. Anal. 52, 2530–2554 (2014)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Jiang, Y., Xu, Y.: Fast discrete algorithms for sparse Fourier expansions of high dimensional functions. J. Complex. 26, 51–81 (2010)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Jiang, Y., Xu, Y.: Fast Fourier–Galerkin methods for solving singular boundary integral equations: numerical integration and precondition. J. Comput. Appl. Math. 234, 2792–2807 (2010)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Jiang, Y., Xu, Y.: Fast computation of the multidimensional discrete Fourier transform and inverse Fourier transform on sparse grids. Math. Comput. 83, 2347–2384 (2014)CrossRefMATHGoogle Scholar
  43. 43.
    Kammerer, L., Potts, D., Volkmer, T.: Approximation of multivariate periodic functions by trigonometric polynomials based on rank-1 lattice sampling. J. Complex. 31, 543–576 (2015)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Kaneko, H., Xu, Y.: Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind. Math. Comput. 62, 739–753 (1994)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Kress, R.: Linear Integral Equations. Springer, New York (1999)CrossRefMATHGoogle Scholar
  46. 46.
    Li, H.: A-priori analysis and the finite element method for a class of degenerate elliptic equations. Math. Comput. 78, 713–737 (2009)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Majidian, H.: Modified Euler’s method with a graded mesh for a class of Volterra integral equations with weakly singular kernel. Numer. Algorithms 67, 405–422 (2014)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Mclean, W.: A spectral Galerkin method for a boundary integral equation. Math. Comput. 47, 597–607 (1986)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Mayo, A.: The fast solution of poisson’s and the biharmonic equations on irregular regions. SIAM J. Numer. Anal. 21, 285–299 (1984)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Mayo, A., Greenbaum, A.: Fast parallel iterative solution of Poisson’s and the biharmonic equations on irregular regions. SIAM J. Sci. Comput. 13, 101–118 (1992)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Nikol’skaya, N.S.: Approximation of differentiable functions of several variables by Fourier sums in the \({L}_p\)-metric. Sibirsk. Mat. Zh. 15, 395–412 (1974)MATHGoogle Scholar
  52. 52.
    Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Education, New York (1986)MATHGoogle Scholar
  53. 53.
    Saranen, J., Vainikko, G.: Periodic Integral and Pseudodifferential Equations with Numerical Approximation. Springer, Berlin (2002)CrossRefMATHGoogle Scholar
  54. 54.
    Shen, J.: Efficient spectral-Galerkin method i. Direct solvers of second-and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15, 1489–1505 (1994)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Shen, J.: Efficient spectral-Galerkin method ii. Direct solvers of second-and fourth-order equations using Chebyshev polynomials. SIAM J. Sci. Comput. 16, 74–87 (1995)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Smith, J.: The coupled equation approach to the numerical solution of the biharmonic equation by finite differences. I. SIAM J. Numer. Anal. 5, 323–339 (1968)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Smith, J.: The coupled equation approach to the numerical solution of the biharmonic equation by finite differences. II. SIAM J. Numer. Anal. 7, 104–111 (1970)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Stephenson, J.: Single cell discretizations of order two and four for biharmonic problems. J. Comput. Phys. 55, 65–80 (1984)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Temlyakov, V.: Approximation of functions with bounded mixed derivative. Trudy Mat. Inst. Steklov. 178, 1–112 (1986)MathSciNetMATHGoogle Scholar
  60. 60.
    Xu, Y., Zhao, Y.: An extrapolation method for a class of boundary integral equations. Math. Comput. 65, 587–610 (1996)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Xu, Y., Zhao, Y.: Quadratures for boundary integral equations of the first kind with logarithmic kernels. J. Integral Equ. Appl. 8, 239–268 (1996)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational ScienceSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  3. 3.Department of MathematicsOld Dominion UniversityNorfolkUSA

Personalised recommendations