Advertisement

Journal of Scientific Computing

, Volume 76, Issue 3, pp 1594–1632 | Cite as

A Fully Discrete Fast Fourier–Galerkin Method Solving a Boundary Integral Equation for the Biharmonic Equation

  • Ying Jiang
  • Bo Wang
  • Yuesheng Xu
Article

Abstract

We develop a fully discrete fast Fourier–Galerkin method for solving a boundary integral equation for the biharmonic equation by introducing a quadrature scheme for computing the integrals of non-smooth functions that appear in the Fourier–Galerkin method. A key step in developing the fully discrete fast Fourier–Galerkin method is the design of a fast quadrature scheme for computing the Fourier coefficients of the non-smooth kernel function involved in the boundary integral equation. We prove that with the proposed quadrature algorithm, the total number of additions and multiplications used in generating the compressed coefficient matrix for the proposed method is quasi-linear (linear with a logarithmic factor), and the resulting numerical solution of the equation preserves the optimal convergence order. Numerical examples are presented to demonstrate the approximation accuracy and computational efficiency of the proposed method.

Keywords

Biharmonic equation Boundary integral equation Fast Fourier–Galerkin method 

Mathematics Subject Classification

31A30 74S25 45E05 

References

  1. 1.
    Apel, T., Sandig, A.-M., Whiteman, J.R.: Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19, 63–85 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Atkinson, K.: The Numerical Solution of Integral Equations of Second Kind. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  3. 3.
    Behrens, E.M., Guzmn, J.: A mixed method for the biharmonic problem based on a system of first-order equations. SIAM J. Numer. Anal. 49, 789–817 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ben-Artzi, M., Chorev, I., Croisille, J.P., Fishelov, D.: A compact difference scheme for the biharmonic equation in planar irregular domains. SIAM J. Numer. Anal. 47, 3087–3108 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ben-Artzi, M., Croisille, J.-P., Fishelov, D.: A fast direct solver for the biharmonic problem in a rectangular grid. SIAM J. Sci. Comput. 31, 303–333 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bialecki, B.: A fast solver for the orthogonal spline collocation solution of the biharmonic dirichlet problem on rectangles. J. Comput. Phys. 191, 601–621 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Babuska, I., Kellogg, R., Pitkaranta, J.: Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math. 33, 447–471 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bacuta, C., Nistor, V., Zikatanov, L.: Improving the rate of convergence of high order finite elements on polygons and domains with cusps. Numer. Math. 100, 165–184 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bailey, D., Swarztrauber, P.: The fractional Fourier transform and applications. SIAM Rev. 33, 389–404 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Borm, S., Sauter, S.: BEM with linear complexity for the classical boundary integral operators. Math. Comput. 74, 1139–1177 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Brenner, S.C.: An optimal-order nonconforming multigrid method for the biharmonic equation. SIAM J. Numer. Anal. 26, 1124–1138 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Brenner, S., Cui, J., Gudi, T., Sung, L.-Y.: Multigrid algorithms for symmetric discontinuous Galerkin methods on graded meshes. Numer. Math. 119, 21–47 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Brunner, H.: The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math. Comput. 45, 417–437 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cai, H., Xu, Y.: A fast Fourier–Galerkin method for solving singualr boundary integral equations. SIAM J. Numer. Anal. 46, 1965–1984 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Chan, R.H., Delillo, T.K., Horn, M.A.: The numerical solution of the biharmonic equation by conformal mapping. SIAM J. Sci. Comput. 18, 1571–1582 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Chan, R.H., DeLillo, T.K., Horn, M.A.: Superlinear convergence estimates for a conjugate gradient method for the biharmonic equation. SIAM J. Sci. Comput. 19, 139–147 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Chan, R.H., Sun, H.-W., Ng, W.-F.: Circulant preconditioners for ill-conditioned boundary integral equations from potential equations. Int. J. Numer. Methods Eng. 43, 1505–1521 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Chen, G., Li, Z., Lin, P.: A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible stokes flow. Adv. Comput. Math. 29, 113–133 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Chen, Z., Micchelli, C.A., Xu, Y.: A construction of interpolating wavelets on invariant sets. Math. Comput. 68, 1569–1587 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Chen, Z., Micchelli, C.A., Xu, Y.: Multiscale Methods for Fredholm Integral Equations. Cambridge University Press, Cambridge (2015)CrossRefzbMATHGoogle Scholar
  22. 22.
    Chen, Z., Wu, B., Xu, Y.: Multilevel augmentation methods for solving operator equations. Numer. Math. J. Chin. Univ. 14, 31–55 (2005)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Cheng, Q., Tang, T., Teng, Z.: A fast numerical method for integral equations of the first kind with logorithmic kernel using mesh grading. J. Comput. Math. 22, 287–298 (2004)MathSciNetGoogle Scholar
  24. 24.
    Chien, D., Atkinson, K.: A discrete Galerkin method for a hypersingular boundary integral equations. IMA J. Numer. Anal. 17, 463–478 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Davini, C., Pitacco, I.: An unconstrained mixed method for the biharmonic problem. SIAM J. Numer. Anal. 38, 820–836 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    DeVore, R., Petrushev, P., Temlyakov, V.: Multivariate trigonometric approximation with frequencies from the hyperpolic cross. Mat. Zametki 56, 36–63 (1994)Google Scholar
  28. 28.
    Döhler, M., Kunis, K., Potts, D.: Nonequispaced hyperbolic cross fast Fourier transform. SIAM J. Numer. Anal. 47, 4415–4428 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ehrlich, L.W., Gupta, M.M.: Some difference schemes for the biharmonic equation. SIAM J. Numer. Anal. 12, 773–790 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Eymard, R., Gallouët, T., Herbin, R., Linke, A.: Finite volume schemes for the biharmonic problem on general meshes. Math. Comput. 81, 2019–2048 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Frank, K., Heinrich, S., Pereverzev, S.: Information complexity of multivariate Fredholm integral equations in sobolev classes. J. Complex. 12, 17–34 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Gradinaru, V.: Strang splitting for the time dependent Schrödinger equation on sparse grids. SIAM J. Numer. Anal. 46, 103–123 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Gómez-Polanco, A., Guevara-Jordan, J.M., Molina, B.: A mimetic iterative scheme for solving biharmonic equations. Math. Comput. Model. 57, 2132–2139 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Greenbaum, A., Greengard, L., Mayo, A.: On the numerical solution of the biharmonic equation in the plane. Phys. D Nonlinear Phenom. 60, 216–225 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Gudi, T., Nataraj, N., Pani, A.K.: Mixed discontinuous Galerkin finite element method for the biharmonic equation. J. Sci. Comput. 37, 139–161 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Hanisch, M.: Multigrid preconditioning for the biharmonic Dirichlet problem. SIAM J. Numer. Anal. 30, 184–214 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Jeon, Y.: New boundary element formulas for the biharmonic equation. Adv. Comput. Math. 9, 97–115 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Jeon, Y.: New indirect scalar boundary integral equation formulas for the biharmonic equation. J. Comput. Appl. Math. 135, 313–324 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Jiang, Y., Wang, B., Xu, Y.: A fast Fourier–Galerkin method solving a boundary integral equation for the biharmonic equation. SIAM J. Numer. Anal. 52, 2530–2554 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Jiang, Y., Xu, Y.: Fast discrete algorithms for sparse Fourier expansions of high dimensional functions. J. Complex. 26, 51–81 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Jiang, Y., Xu, Y.: Fast Fourier–Galerkin methods for solving singular boundary integral equations: numerical integration and precondition. J. Comput. Appl. Math. 234, 2792–2807 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Jiang, Y., Xu, Y.: Fast computation of the multidimensional discrete Fourier transform and inverse Fourier transform on sparse grids. Math. Comput. 83, 2347–2384 (2014)CrossRefzbMATHGoogle Scholar
  43. 43.
    Kammerer, L., Potts, D., Volkmer, T.: Approximation of multivariate periodic functions by trigonometric polynomials based on rank-1 lattice sampling. J. Complex. 31, 543–576 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Kaneko, H., Xu, Y.: Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind. Math. Comput. 62, 739–753 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Kress, R.: Linear Integral Equations. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  46. 46.
    Li, H.: A-priori analysis and the finite element method for a class of degenerate elliptic equations. Math. Comput. 78, 713–737 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Majidian, H.: Modified Euler’s method with a graded mesh for a class of Volterra integral equations with weakly singular kernel. Numer. Algorithms 67, 405–422 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Mclean, W.: A spectral Galerkin method for a boundary integral equation. Math. Comput. 47, 597–607 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Mayo, A.: The fast solution of poisson’s and the biharmonic equations on irregular regions. SIAM J. Numer. Anal. 21, 285–299 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Mayo, A., Greenbaum, A.: Fast parallel iterative solution of Poisson’s and the biharmonic equations on irregular regions. SIAM J. Sci. Comput. 13, 101–118 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Nikol’skaya, N.S.: Approximation of differentiable functions of several variables by Fourier sums in the \({L}_p\)-metric. Sibirsk. Mat. Zh. 15, 395–412 (1974)Google Scholar
  52. 52.
    Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Education, New York (1986)zbMATHGoogle Scholar
  53. 53.
    Saranen, J., Vainikko, G.: Periodic Integral and Pseudodifferential Equations with Numerical Approximation. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  54. 54.
    Shen, J.: Efficient spectral-Galerkin method i. Direct solvers of second-and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15, 1489–1505 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Shen, J.: Efficient spectral-Galerkin method ii. Direct solvers of second-and fourth-order equations using Chebyshev polynomials. SIAM J. Sci. Comput. 16, 74–87 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Smith, J.: The coupled equation approach to the numerical solution of the biharmonic equation by finite differences. I. SIAM J. Numer. Anal. 5, 323–339 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Smith, J.: The coupled equation approach to the numerical solution of the biharmonic equation by finite differences. II. SIAM J. Numer. Anal. 7, 104–111 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Stephenson, J.: Single cell discretizations of order two and four for biharmonic problems. J. Comput. Phys. 55, 65–80 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Temlyakov, V.: Approximation of functions with bounded mixed derivative. Trudy Mat. Inst. Steklov. 178, 1–112 (1986)MathSciNetGoogle Scholar
  60. 60.
    Xu, Y., Zhao, Y.: An extrapolation method for a class of boundary integral equations. Math. Comput. 65, 587–610 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Xu, Y., Zhao, Y.: Quadratures for boundary integral equations of the first kind with logarithmic kernels. J. Integral Equ. Appl. 8, 239–268 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational ScienceSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  3. 3.Department of MathematicsOld Dominion UniversityNorfolkUSA

Personalised recommendations