Skip to main content
Log in

A New Primal–Dual Algorithm for Minimizing the Sum of Three Functions with a Linear Operator

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a new primal–dual algorithm for minimizing \(f({\mathbf {x}})+g({\mathbf {x}})+h({\mathbf {A}}{\mathbf {x}})\), where f, g, and h are proper lower semi-continuous convex functions, f is differentiable with a Lipschitz continuous gradient, and \({\mathbf {A}}\) is a bounded linear operator. The proposed algorithm has some famous primal–dual algorithms for minimizing the sum of two functions as special cases. E.g., it reduces to the Chambolle–Pock algorithm when \(f=0\) and the proximal alternating predictor–corrector when \(g=0\). For the general convex case, we prove the convergence of this new algorithm in terms of the distance to a fixed point by showing that the iteration is a nonexpansive operator. In addition, we prove the O(1 / k) ergodic convergence rate in the primal–dual gap. With additional assumptions, we derive the linear convergence rate in terms of the distance to the fixed point. Comparing to other primal–dual algorithms for solving the same problem, this algorithm extends the range of acceptable parameters to ensure its convergence and has a smaller per-iteration cost. The numerical experiments show the efficiency of this algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The conjugate function \(l^*\) of l is defined as \(l^*({\mathbf {s}})=\sup _{{\mathbf {t}}}\langle {\mathbf {s}},{\mathbf {t}}\rangle -l({\mathbf {t}})\). When \(l({\mathbf {s}})=\iota _{\{\mathbf {0}\}}({\mathbf {s}})\), we have \(l^*({\mathbf {s}})=0\). The conjugate function of \(h\square l\) is \((h\square l)^*=h^*+l^*\).

  2. The adjoint operator \({\mathbf {A}}^\top \) is defined by \(\langle {\mathbf {s}},{\mathbf {A}}{\mathbf {x}}\rangle _{\mathcal {S}}= \langle {\mathbf {A}}^\top {\mathbf {s}},{\mathbf {x}}\rangle _{\mathcal {X}}\).

References

  1. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  2. Baytas, I.M., Yan, M., Jain, A.K., Zhou, J.: Asynchronous multi-task learning. In: IEEE International Conference on Data Mining (ICDM), pp. 11–20. IEEE (2016)

  3. Briceno-Arias, L.M.: Forward-Douglas–Rachford splitting and forward-partial inverse method for solving monotone inclusions. Optimization 64(5), 1239–1261 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chambolle, A., Pock, T.: A first-order primal–dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numer. 25, 161–319 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal–dual algorithm. Math. Program. 159(1–2), 253–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, P., Huang, J., Zhang, X.: A primal–dual fixed point algorithm for convex separable minimization with applications to image restoration. Inverse Probl. 29(2), 025011 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, P., Huang, J., Zhang, X.: A primal–dual fixed point algorithm for minimization of the sum of three convex separable functions. Fixed Point Theory Appl. 2016(1), 1–18 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Combettes, P.L., Condat, L., Pesquet, J.C., Vu, B.C.: A forward–backward view of some primal–dual optimization methods in image recovery. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 4141–4145 (2014)

  10. Combettes, P.L., Pesquet, J.C.: Primal–dual splitting algorithm for solving inclusions with mixtures of composite, lipschitzian, and parallel-sum type monotone operators. Set Valued Var. Anal. 20(2), 307–330 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Condat, L.: A direct algorithm for 1-d total variation denoising. IEEE Signal Process. Lett. 20(11), 1054–1057 (2013)

    Article  Google Scholar 

  12. Condat, L.: A primal–dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Davis, D.: Convergence rate analysis of primal–dual splitting schemes. SIAM J. Optim. 25(3), 1912–1943 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Davis, D., Yin, W.: Convergence rate analysis of several splitting schemes. In: Glowinski, R., Osher, S.J., Yin, W. (eds.) Splitting Methods in Communication, Imaging, Science, and Engineering, pp. 115–163. Springer, Cham (2016)

    Chapter  Google Scholar 

  15. Davis, D., Yin, W.: A three-operator splitting scheme and its optimization applications. Set Valued Var. Anal. 25(4), 829–858 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–489 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  17. Drori, Y., Sabach, S., Teboulle, M.: A simple algorithm for a class of nonsmooth convexconcave saddle-point problems. Oper. Res. Lett. 43(2), 209–214 (2015)

    Article  MathSciNet  Google Scholar 

  18. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gabay, D.: Applications of the method of multipliers to variational inequalities. Stud. Math. Appl. 15, 299–331 (1983)

    Google Scholar 

  20. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

    Article  MATH  Google Scholar 

  21. Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique 9(2), 41–76 (1975)

  22. He, B., You, Y., Yuan, X.: On the convergence of primal–dual hybrid gradient algorithm. SIAM J. Imaging Sci. 7(4), 2526–2537 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Komodakis, N., Pesquet, J.C.: Playing with duality: an overview of recent primal-dual approaches for solving large-scale optimization problems. IEEE Signal Process. Mag. 32(6), 31–54 (2015)

    Article  Google Scholar 

  24. Krol, A., Li, S., Shen, L., Xu, Y.: Preconditioned alternating projection algorithms for maximum a posteriori ECT reconstruction. Inverse Probl. 28(11), 115005 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Latafat, P., Patrinos, P.: Asymmetric forward–backward-adjoint splitting for solving monotone inclusions involving three operators. Comput. Optim. Appl. 68(1), 57–93 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lorenz, D.A., Pock, T.: An inertial forward–backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51(2), 311–325 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Loris, I., Verhoeven, C.: On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty. Inverse Probl. 27(12), 125007 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. O’Connor, D., Vandenberghe, L.: On the equivalence of the primal-dual hybrid gradient method and Douglas–Rachford splitting. optimization-online.org (2017)

  29. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72(2), 383–390 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3(1), 28–41 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  31. Peng, Z., Wu, T., Xu, Y., Yan, M., Yin, W.: Coordinate friendly structures, algorithms and applications. Ann. Math. Sci. Appl. 1(1), 57–119 (2016)

    MATH  Google Scholar 

  32. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford–Shah functional. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1133–1140. IEEE (2009)

  33. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67(1), 91–108 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38(3), 667–681 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yan, M., Yin, W.: Self equivalence of the alternating direction method of multipliers. In: Glowinski, R., Osher, S.J., Yin, W. (eds.) Splitting Methods in Communication, Imaging, Science, and Engineering, pp. 165–194. Springer, Cham (2016)

    Chapter  Google Scholar 

  36. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The Authors would like to thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yan.

Additional information

The work was supported in part by the NSF Grant DMS-1621798.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, M. A New Primal–Dual Algorithm for Minimizing the Sum of Three Functions with a Linear Operator. J Sci Comput 76, 1698–1717 (2018). https://doi.org/10.1007/s10915-018-0680-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0680-3

Keywords

Navigation