Skip to main content
Log in

Supercloseness of Continuous Interior Penalty Methods on Shishkin Triangular Meshes and Hybrid Meshes for Singularly Perturbed Problems with Characteristic Layers

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A singularly perturbed convection–diffusion problem posed on the unit square is solved using a continuous interior penalty (CIP) method. The mesh used is a Shishkin triangular mesh or a Shishkin hybrid mesh consisting of triangles and rectangles. For the CIP method, a variant of Oswald interpolation operator is introduced for a discrete inf-sup stability, which is proved in a new norm stronger than the the usual CIP norm. This stability and a new cancellation technique enable new supercloseness results for the CIP method: the computed solutions on the triangular mesh and the hybrid mesh are shown to be 3/2 order and 2 order (up to a logarithmic factor) convergent in the new norm to the interpolants of the true solution, respectively. These convergence orders are uniformly valid with respect to the diffusion parameter and imply that for the Shishkin mesh the hybrid mesh is superior to the triangular one. Numerical experiments illustrate these theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, part I: grids with superconvergence. SIAM J. Numer. Anal. 41(6), 2294–2312 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burman, E.: A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty. SIAM J. Numer. Anal. 43(5), 2012–2033 (2005). https://doi.org/10.1137/S0036142903437374

    Article  MathSciNet  MATH  Google Scholar 

  4. Burman, E., Ern, A.: Continuous interior penalty \(hp\)-finite element methods for transport operators. In: de Castro, A., Gómez, D., Quintela, P., Salgado, P. (eds.) Numerical Mathematics and Advanced Applications, pp. 504–511. Springer, Berlin (2006). https://doi.org/10.1007/978-3-540-34288-5_46

    Chapter  Google Scholar 

  5. Burman, E., Guzmán, J., Leykekhman, D.: Weighted error estimates of the continuous interior penalty method for singularly perturbed problems. IMA J. Numer. Anal. 29(2), 284–314 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 193(15–16), 1437–1453 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Douglas Jr., J., Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Glowinski, R., Lions, J.L. (eds.) Computing Methods in Applied Sciences, Second International Symposium, Versailles, 1975. Lecture Notes in Physics, vol. 58, pp. 207–216. Springer, Berlin (1976)

  8. Farrashkhalvat, M., Miles, J.P.: Basic Structured Grid Generation: With an Introduction to Unstructured Grid Generation. ButterworthHeinemann, Oxford (2003)

    Google Scholar 

  9. Franz, S.: Continuous interior penalty method on a Shishkin mesh for convection–diffusion problems with characteristic boundary layers. Comput. Methods Appl. Mech. Eng. 197(45–48), 3679–3686 (2008). https://doi.org/10.1016/j.cma.2008.02.019

    Article  MathSciNet  MATH  Google Scholar 

  10. Franz, S., Linß, T.: Superconvergence analysis of the Galerkin FEM for a singularly perturbed convection–diffusion problem with characteristic layers. Numer. Methods Partial Differ. Equ. 24(1), 144–164 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Franz, S., Linß, T., Roos, H.: Superconvergence analysis of the SDFEM for elliptic problems with characteristic layers. Appl. Numer. Math. 58(12), 1818–1829 (2008). https://doi.org/10.1016/j.apnum.2007.11.005

    Article  MathSciNet  MATH  Google Scholar 

  12. Franz, S., Linß, T., Roos, H., Schiller, S.: Uniform superconvergence of a finite element method with edge stabilization for convection–diffusion problems. J. Comput. Math. 28(1), 32–44 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Kellogg, R.B., Stynes, M.: Corner singularities and boundary layers in a simple convection–diffusion problem. J. Differ. Equ. 213(1), 81–120 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kellogg, R.B., Stynes, M.: Sharpened bounds for corner singularities and boundary layers in a simple convection–diffusion problem. Appl. Math. Lett. 20(5), 539–544 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, X., Zhang, J.: Galerkin finite element methods for convection–diffusion problems with exponential layers on Shishkin triangular meshes and hybrid meshes. Appl. Math. Comput. 307, 244–256 (2017). https://doi.org/10.1016/j.amc.2017.03.003

    MathSciNet  Google Scholar 

  16. Liu, X., Zhang, J.: Uniform supercloseness of Galerkin finite element method for convection–diffusion problems with characteristic layers. Comput. Math. Appl. (2017). https://doi.org/10.1016/j.camwa.2017.09.028

  17. Matthies, G.: Local projection methods on layer-adapted meshes for higher order discretisations of convection–diffusion problems. Appl. Numer. Math. 59(10), 2515–2533 (2009). https://doi.org/10.1016/j.apnum.2009.05.008

    Article  MathSciNet  MATH  Google Scholar 

  18. Matthies, G.: Local projection stabilisation for higher order discretisations of convection–diffusion problems on Shishkin meshes. Adv. Comput. Math. 30(4), 315–337 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Roos, H.: Superconvergence on a hybrid mesh for singularly perturbed problems with exponential layers. ZAMM Z. Angew. Math. Mech. 86(8), 649–655 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Roos, H., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer Series in Computational Mathematics, vol. 24, 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  21. Roos, H., Zarin, H.: A supercloseness result for the discontinuous Galerkin stabilization of convection–diffusion problems on Shishkin meshes. Numer. Methods Partial Differ. Equ. 23(6), 1560–1576 (2007). https://doi.org/10.1002/num.20241

    Article  MathSciNet  MATH  Google Scholar 

  22. Stynes, M.: Steady-state convection–diffusion problems. Acta Numer. 14, 445–508 (2005). https://doi.org/10.1017/S0962492904000261

    Article  MathSciNet  MATH  Google Scholar 

  23. Stynes, M., Tobiska, L.: The SDFEM for a convection–diffusion problem with a boundary layer: optimal error analysis and enhancement of accuracy. SIAM J. Numer. Anal. 41(5), 1620–1642 (2003). https://doi.org/10.1137/S0036142902404728

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, J., Liu, X.: Analysis of SDFEM on Shishkin triangular meshes and hybrid meshes for problems with characteristic layers. J. Sci. Comput. 68(3), 1299–1316 (2016). https://doi.org/10.1007/s10915-016-0180-2

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, J., Liu, X.: Pointwise estimates of SDFEM on Shishkin triangular meshes for problems with exponential layers. BIT Numer. Math. (2017). https://doi.org/10.1007/s10543-017-0661-1

  26. Zhang, J., Liu, X.: Supercloseness of the SDFEM on Shishkin triangular meshes for problems with exponential layers. Adv. Comput. Math. 43(4), 759–775 (2017). https://doi.org/10.1007/s10444-016-9505-9

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, J., Liu, X., Yang, M.: Optimal order \(L^2\) error estimate of SDFEM on Shishkin triangular meshes for singularly perturbed convection–diffusion equations. SIAM J. Numer. Anal. 54(4), 2060–2080 (2016). https://doi.org/10.1137/15M101035X

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, J., Mei, L., Chen, Y.: Pointwise estimates of the SDFEM for convection–diffusion problems with characteristic layers. Appl. Numer. Math. 64, 19–34 (2013). https://doi.org/10.1016/j.apnum.2012.07.009

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, J., Stynes, M.: Supercloseness of continuous interior penalty method for convection–diffusion problems with characteristic layers. Comput. Methods Appl. Mech. Eng. 319, 549–566 (2017). https://doi.org/10.1016/j.cma.2017.03.013

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous referees for their valuable comments and suggestions that led us to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhang.

Additional information

Jin Zhang is supported by National Science Foundation of China (11771257,11501335), Shandong Provincial Natural Science Foundation, China (ZR2017MA003) and A Project of Shandong Province Higher Educational Science and Technology Program (J17KA169).

Xiaowei Liu is supported by National Science Foundation of China (11601251) and Shandong Provincial Natural Science Foundation, China (ZR2016AM13).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, X. Supercloseness of Continuous Interior Penalty Methods on Shishkin Triangular Meshes and Hybrid Meshes for Singularly Perturbed Problems with Characteristic Layers. J Sci Comput 76, 1633–1656 (2018). https://doi.org/10.1007/s10915-018-0677-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0677-y

Keywords

Mathematics Subject Classification

Navigation