Skip to main content
Log in

Meshless Conservative Scheme for Multivariate Nonlinear Hamiltonian PDEs

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

For multivariate nonlinear Hamiltonian equations, we propose a meshless conservative method by using radial basis approximation. Based on the method of lines, we first discretize the Hamiltonian functional using radial basis function interpolation, and then obtain a finite-dimensional semi-discrete Hamiltonian system. Moreover, we define a discrete symplectic form and verify that it is an approximation to the continuous one and is conserved with respect to time. For time discretization, two conservative methods (symplectic method and energy-conserving method) are employed to derive the full-discretized system. Approximation errors together with conservation properties including symplecticity and energy are discussed in detail. Finally, we present several numerical examples to illustrate that our method is accurate and effective when processing nonlinear Hamiltonian equations with scattered nodes. Besides, the numerical results also confirm the excellent conservation properties of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abia, L., Sanz-Serna, J.M.: Partitioned Runge–Kutta methods for separable Hamiltonian problems. Math. Comput. 60, 617–634 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Betsch, P., Steinmann, P.: Inherently energy conserving time finite elements for classical mechanics. J. Comput. Phys. 160(1), 88–116 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bratsos, A.G.: A fourth order numerical scheme for the one dimensional Sine-Gordon equation. Int. J. Comput. Math. 85, 1083–1095 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bridges, T.J.: Numerical methods for Hamiltonian PDEs. J. Phys. A 39, 5287–5320 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Energy conservation issues in the numerical solution of the semilinear wave equation. Appl. Math. Comput. 270, 842–870 (2015)

    MathSciNet  Google Scholar 

  6. Buhmann, M.D.: Radial basis functions. Acta Numer. 9, 1–38 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cano, B.: Conserved quantities of some Hamiltonian wave equations after full discretization. Numer. Math. 103, 197–223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Celledoni, E., Owren, B., Sun, Y.: The minimal stage, energy preserving Runge–Kutta method for polynomial Hamiltonian systems is the averaged vector field method. Math. Comput. 83(288), 1689–1700 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field”method. J. Comput. Phys. 231, 6770–6789 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, J.B.: Symplectic and multisymplectic Fourier pseudospectral discretizations for the Klein–Gordon equation. Lett. Math. Phys. 75, 293–305 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cohen, D., Hairer, E., Lubich, C.: Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations. Numer. Math. 110, 113–143 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duncan, D.B.: Symplectic finite difference approximations of the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 34, 1742–1760 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fasshauer, G.E.: Meshfree Approximation Methods with Matlab, Interdisciplinary Mathematical Sciences, vol. 6. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  14. Feng, K., Qin, M.Z.: Symplectic Geometric Algorithms for Hamiltonian Systems. Zhejiang Publishing United Group, Zhejiang Science and Technology Publishing House, Hangzhou and Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  15. Frutos, J., Sanz-Serna, J.M.: Accuracy and conservation properties in numerical integration: the case of the Korteweg–de Vries equation. Numer. Math. 75, 421–445 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Furihata, D.: Finite difference schemes for \(\frac{\partial u}{\partial t}=\left(\frac{\partial u}{\partial x}\right)^{\alpha } \frac{\delta G}{\delta u}\) that inherit energy conservation or dissipation property. J. Comput. Phys. 156, 181–205 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration, volume 31 of Springer Series in Computational Mathematics. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2002)

  18. Kitson, A., McLachlan, R.I., Robidoux, N.: Skew-adjoint finite difference methods on nonuniform grids. N. Z. J. Math. 32, 139–159 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Lasagni, F.M.: Canonical Runge–Kutta methods. Z. Angew. Math. Phys. 39, 5509–5519 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, H.L., Yi, N.Y.: A Hamiltonian preserving discontinuous Galerkin method for the generalized Korteweg–de Vries equation. J. Comput. Phys. 321, 776–796 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Matsuo, T.: New conservative schemes with discrete variational derivatives for nonlinear wave equations. J. Comput. Appl. Math. 203, 32–56 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. McLachlan, R.I.: Symplectic integration of Hamiltonian wave equations. Numer. Math. 66, 465–492 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. McLachlan, R.I., Robidoux, N.: Antisymmetry, pseudospectral methods, and conservative PDEs. In: International Conference on Differential Equations, vols. 1–2. World Sci. Publ., River Edge, NJ, pp. 994–999 (1999)

  25. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. A 357, 1021–1045 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditional positive definite functions. Construt. Approx. 2, 11–22 (1986)

    Article  MATH  Google Scholar 

  27. Mohammadreza, A.D.: Direct meshless local Petrov–Galerkin method for the two-dimensional Klein–Gordon equation. Eng. Anal. Bound. Elem. 74, 1–13 (2017)

    Article  MathSciNet  Google Scholar 

  28. Oliver, M., West, M., Wulff, C.: Approximate momentum conservation for spatial semidiscretizations of semilinear wave equations. Numer. Math. 97, 493–535 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pekmen, B., Tezer-Sezgin, M.: Differential quadrature solution of nonlinear Klein–Gordon and Sine-Gordon equations. Comput. Phys. Commun. 183, 1702–1713 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Powell, M.J.D.: Radial Basis Functions for Multivariate Interpolation: A Review, in Numerical Analysis, pp. 223–241. Longman Scientific & Technical, New York (1987)

    Google Scholar 

  31. Quispel, G.R.W., McLaren, D.L.: A new class of energy-preserving numerical integration methods. J. Phys. A 41, 045206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Applied Mathematics and Mathematical Computation, No. 7. Chapman & Hall, London (1994)

    MATH  Google Scholar 

  33. Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3(3), 251–264 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schaback, R., Wu, Z.M.: Construction techniques for highly accurate quasi-interpolation operators. J. Approx. Theory 91, 320–331 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Strauss, W.A.: Nonlinear wave equations. AMS Regional Conference Series, no. 73 (1989)

  36. Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  37. Wu, Z.M.: Hermite-Birkhoff interpolation of scattered data by radial basis functions. Approx. Theory Appl. 8(2), 1–10 (1992)

    MathSciNet  MATH  Google Scholar 

  38. Wu, Z.M., Schaback, R.: Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal. 13, 13–27 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wu, Z.M., Liu, J.P.: Generalized Strang-Fix condition for scattered data quasi-interpolation. Adv. Comput. Math. 23, 201–214 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu, Z.M., Zhang, S.L.: Conservative multiquadric quasi-interpolation method for Hamiltonian wave equations. Eng. Anal. Bound. Elem. 37, 1052–1058 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wu, Z.M., Zhang, S.L.: A meshless symplectic algorithm for multi-variate Hamiltonian PDEs with radial basis approximation. Eng. Anal. Bound. Elem. 50, 258–264 (2015)

    Article  MathSciNet  Google Scholar 

  42. Zhen, L., Bai, Y., Li, Q., Wu, K.: Symplectic and multisymplectic schemes with the simple finite element method. Phys. Lett. A 314, 443–455 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhong, G., Marsden, J.E.: Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators. Phys. Lett. A 113(3), 134–139 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhu, H.J., Tang, L.Y., Song, S.H., Tang, Y.F., Wang, D.S.: Symplectic wavelet collocation method for Hamiltonian wave equations. J. Comput. Phys. 229(7), 2550–2572 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongmin Wu.

Additional information

This work is supported by NSFC (11631015, 91330201), Joint Research Fund by National Natural Science Foundation of China and Research Grants Council of Hong Kong (11461161006).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Wu, Z. Meshless Conservative Scheme for Multivariate Nonlinear Hamiltonian PDEs. J Sci Comput 76, 1168–1187 (2018). https://doi.org/10.1007/s10915-018-0658-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0658-1

Keywords

Mathematics Subject Classification

Navigation