Skip to main content
Log in

Structure-Preserving Model-Reduction of Dissipative Hamiltonian Systems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Reduced basis methods are popular for approximately solving large and complex systems of differential equations. However, conventional reduced basis methods do not generally preserve conservation laws and symmetries of the full order model. Here, we present an approach for reduced model construction, that preserves the symplectic symmetry of dissipative Hamiltonian systems. The method constructs a closed reduced Hamiltonian system by coupling the full model with a canonical heat bath. This allows the reduced system to be integrated with a symplectic integrator, resulting in a correct dissipation of energy, preservation of the total energy and, ultimately, it helps conserving the stability of the solution. Accuracy and stability of the method are illustrated through the numerical simulation of the dissipative wave equation and a port-Hamiltonian model of an electric circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Afkham, B.M., Hesthaven, J.S.: Structure preserving model reduction of parametric Hamiltonian systems. SIAM J. Sci. Comput. 39, A2616–A2644 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amsallem, D., Farhat, C.: On the Stability of Reduced-Order Linearized Computational Fluid Dynamics Models Based on POD and Galerkin Projection: Descriptor Vs. Non-descriptor Forms, in Reduced Order Methods for Modeling and Computational Reduction, pp. 215–233. Springer, Cham (2014)

    MATH  Google Scholar 

  3. Beattie, C, Gugercin, S.: Structure-preserving model reduction for nonlinear port-Hamiltonian systems. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 6564–6569. IEEE (2011)

  4. Bhatia, N., Szegö, G.: Stability Theory of Dynamical Systems, Classics in Mathematics. Springer, Berlin (2002)

    Google Scholar 

  5. Carlberg, K., Tuminaro, R., Boggs, P.: Preserving Lagrangian structure in nonlinear model reduction with application to structural dynamics. SIAM J. Sci. Comput. 37, B153–B184 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chaturantabut, S., Beattie, C., Gugercin, S.: Structure-preserving model reduction for nonlinear port-Hamiltonian systems. SIAM J. Sci. Comput. 38, B837–B865 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32, 2737–2764 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Corduneanu, C.: Integral Equations and Applications, vol. 148. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  9. da Silva, A.: Introduction to Symplectic and Hamiltonian Geometry. Publicações matemáticas, IMPA, New York (2003)

    MATH  Google Scholar 

  10. de Gosson, M.: Symplectic Geometry and Quantum Mechanics, Operator Theory: Advances and Applications. Birkhäuser, Basel (2006)

    Book  MATH  Google Scholar 

  11. Figotin, A., Schenker, J.H.: Spectral theory of time dispersive and dissipative systems. Stat. Phys. 118, 199–263 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Figotin, A., Schenker, J.H.: Hamiltonian structure for dispersive and dissipative dynamical systems. J. Stat. Phys. 128(4), 969–1056 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Dordrecht (2006)

    MATH  Google Scholar 

  14. Hesthaven, J., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations, Springer Briefs in Mathematics. Springer International Publishing, Berlin (2015)

    MATH  Google Scholar 

  15. Ito, K., Ravindran, S.S.: A Reduced Basis Method for Control Problems Governed by PDEs, in Control and Estimation of Distributed Parameter Systems (Vorau, 1996), pp. 153–168. Birkhäuser, Basel (1996)

    Google Scholar 

  16. Ito, K., Ravindran, S.S.: A reduced-order method for simulation and control of fluid flows. J. Comput. Phys. 143, 403–425 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ito, K., Ravindran, S.S.: Reduced basis method for optimal control of unsteady viscous flows. Int. J. Comput. Fluid Dyn. 15, 97–113 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karow, M., Kressner, D., Tisseur, F.: Structured eigenvalue condition numbers. SIAM J. Matrix Anal. Appl. 28, 1052–1068 (2006). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lall, S., Krysl, P., Marsden, J.E.: Structure-preserving model reduction for mechanical systems. Physica D 184, 304–318 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lamb, H.: On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium. Proc. Lond. Math. Soc. XXXII, 208–211 (1900)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Springer Publishing Company, Berlin (2010)

    MATH  Google Scholar 

  22. Peng, L., Mohseni, K.: Geometric model reduction of forced and dissipative Hamiltonian systems. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 7465–7470. IEEE (2016)

  23. Peng, L., Mohseni, K.: Symplectic model reduction of Hamiltonian systems. SIAM J. Sci. Comput. 38, A1–A27 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Polyuga, R.V., van der Schaft, A.: Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Autom. J. IFAC Int. Fed. Autom. Control 46, 665–672 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Prajna, S.: Pod model reduction with stability guarantee. In: 2003. Proceedings. 42nd IEEE Conference on Decision and Control, vol. 5, pp. 5254–5258. IEEE (2003)

  26. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: An Introduction, UNITEXT. Springer International Publishing, Berlin (2015)

    MATH  Google Scholar 

  27. Salam, A., Al-Aidarous, E.: Equivalence between modified symplectic Gram–Schmidt and Householder SR algorithms. BIT Numer. Math. 54, 283–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Strang, G.: Introduction to Linear Algebra, 4th edn. Wellesley-Cambridge Press, Wellesley (2009)

    MATH  Google Scholar 

  29. van der Schaft, A.: L\(_{2}\)-Gain and Passivity Techniques in Nonlinear Control, Vol. 218 of Lecture Notes in Control and Information Sciences. Springer, London (1996)

    Google Scholar 

  30. van der Schaft, A., Jeltsema, D.: Port-Hamiltonian systems theory: an introductory overview. Found. Trends Syst. Control 1, 173–378 (2014)

    Article  Google Scholar 

  31. Willems, J.C.: Dissipative dynamical systems. II. Linear systems with quadratic supply rates. Arch. Ration. Mech. Anal. 45, 352–393 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by AFOSR under contract FA9550-17-1-0241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Maboudi Afkham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maboudi Afkham, B., Hesthaven, J.S. Structure-Preserving Model-Reduction of Dissipative Hamiltonian Systems. J Sci Comput 81, 3–21 (2019). https://doi.org/10.1007/s10915-018-0653-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0653-6

Keywords

Navigation