Monotone Finite Volume Schemes for Diffusion Equation with Imperfect Interface on Distorted Meshes

Article
  • 16 Downloads

Abstract

In this paper, we prove the solution of diffusion equation with imperfect interface is positivity-preserving and a monotone finite volume method is presented to obtain the nonnegative solution on distorted mesh. Motivated by Sheng and Yuan (J Comput Phys 231:3739–3754, 2012), the discrete normal flux on interface is defined by using an extended stencil and introducing two auxiliary points to distinguish the discontinuities of the unknowns on both sides of the interface. The resulting finite volume scheme is locally conservative and has only cell-centered unknowns. Moreover, it is proved to be monotone. The numerical results show that the method obtains second order convergent rate in \(L_2\) norms for solutions on quadrilateral and triangular meshes.

Keywords

Monotone Finite volume scheme Elliptic interface problem Distorted mesh Jump condition 

References

  1. 1.
    Adjerid, S., Ben-Romdhane, M., Lin, T.: Higher order immersed finite element methods for second-order elliptic interface problems. Int. J. Numer. Anal. Mod. 11(3), 541–566 (2014)MATHGoogle Scholar
  2. 2.
    Babuska, I., Caloz, G., Osborn, J.E.: Special finite element methods for a class of second order elliptic prolbems with rough coefficients. SIAM J. Numer. Anal. 31, 945–981 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bramble, J., King, J.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6, 109–138 (1996)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Burman, E., Hansbo, P.: Interior-penalty-stabilized Lagrange multiplier methods for the finite-element solution of elliptic interface problems. SIAM J. Numer. Anal. 30, 870–885 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chernogorova, T., Ewing, R.E., Iliev, O., Lazarov, R.: On the Discretization of Interface Problems with Perfect and Imperfect Contact. Lecture Notes in Physics, vol. 552, pp. 93–103. Springer, New York (2000)MATHGoogle Scholar
  6. 6.
    Ewing, R., Iliev, O., Lazarow, R.: A modified finite volume approximation of second-order elliptic equations with discontinuous coefficients. SIAM J. Sci. Comput. 23(4), 1335–1351 (2001)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Fogelson, A.L., Keener, J.P.: Immersed interface methods for Neumann and related problems in two and three dimensions. SIAM J. Sci. Comput. 22(5), 1630–1654 (2001)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2015)MATHGoogle Scholar
  9. 9.
    Harari, I., Dolbow, J.: Analysis of an efficient finite element method for embedded interface problems. Comput. Math. 46, 205–211 (2010)MathSciNetMATHGoogle Scholar
  10. 10.
    He, X., Lin, T., Lin, Y.: Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient. J. Syst. Sci. Complex. 23, 467–483 (2010)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    He, X., Lin, T., Lin, Y.: Approximation capability of a bilinear immersed finite element space. Numer. Methods Part. D. E. 24(5), 1265–1300 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    He, X., Lin, T., Lin, Y., Zhang, X.: Immersed finite element methods for parabolic equations with moving interface. Numer. Methods Part. D. E. 29(2), 619–646 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gong, Y., Li, B., Li, Z.: Immersed-interface finite-element methods for elliptic interface problems with nonhomogeneous jump conditions. SIAM J. Numer. Anal. 46(1), 472–495 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gong, Y., Li, Z.: Immersed Interface Finite Element Methods for Elasticity Interface Problems with Non-Homogeneous Jump Conditions. Numer. Math. Theory Methods Appl. 3(1), 23–39 (2010)MathSciNetMATHGoogle Scholar
  15. 15.
    He, X., Lin, T., Lin, Y.: Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions. Int. J. Numer. Anal. Model 8(2), 284–301 (2011)MathSciNetMATHGoogle Scholar
  16. 16.
    Cao, Y., Chu, Y., He, X., et al.: An iterative immersed finite element method for an electric potential interface problem based on given surface electric quantity. J. Comput. Phys. 281, 82–95 (2015)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Guzm, J., Schez, M., Sarkis, M.: On the accuracy of finite element approximations to a class of interface problems. Math. Comput. 85(301), 2071–2098 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Johansen, H., Colella, P.: A cartesian grid embedded boundary method for Poissons equation on irregular domains. J. Comput. Phys. 147, 60–85 (1998)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Latige, M., Colin, T., Gallice, G.: A second order Cartesian finite volume method for elliptic interface and embedded Dirichlet problems. Comput. Fluids 83, 70–76 (2013)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Lehrenfeld, C.: High order unfitted finite element methods on level set domains using isoparametric mappings, arXiv preprint arXiv:1509.02762 (2015)
  21. 21.
    LeVeque, R.J., Li, Z.L.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31, 1019–1044 (1994)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Li, Z.L., Wang, D.S., Zou, Z.: Theoretical and numerical analysis on a thermo-elastic system with discontinuities. J. Comput. Appl. Math. 92, 37–58 (1998)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Li, Z., Lin, T., Wu, X.: New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96(1), 61–98 (2003)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Lin, T., Lin, Y., Zhang, X.: Partially penalized immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal. 53(2), 1121–1144 (2015)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Lin, T., Sheen, D.W., Zhang, X.: Noncomforming immersed finite element methods for elliptic interface problems, arXiv preprint arXiv:1510.00052 (2015)
  26. 26.
    Li, Z.L., Ito, K.: The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains. SIAM, Philadelphia (2006)CrossRefMATHGoogle Scholar
  27. 27.
    Li, Z.L.: An overview of the immersed interface method and its application. Taiwan. J. Math. 7, 1–49 (2003)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Li, Z.L., Ito, K.: Maximum principle preserving schemes for interface problems with discontinuous coefficients. SIAM J. Sci. Comput. 23, 339–361 (2001)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Lpez-Realpozo, J.C., Rodrguez-Ramos, R., Guinovart-Daz, R., et al.: Effective properties of non-linear elastic laminated composites with perfect and imperfect contact conditions. Mech. Adv. Mater. Struct. 15(5), 375–385 (2008)CrossRefGoogle Scholar
  30. 30.
    Mua, L., Wang, J.P., et al.: Weak Galerkin methods for second order elliptic interface problems. J. Comput. Phys. 250, 106–125 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Oevermann, M., Klein, R.: A cartesian grid finite volume method for the solution of the Poisson equation with variable coefficients and embedded interfaces. J. Comput. Phys. 219(2), 749–769 (2006)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Oevermann, M., Scharfenberg, C., Klein, R.: A sharp interface finite volume method for elliptic equations on Cartesian grids. J. Comput. Phys. 228, 5184–5206 (2009)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Peskin, C.S.: Numerical analysis of blood flow in heart. J. Comput. Phys. 25, 220–252 (1977)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Samarskii, A.A., Andreev, V.B.: Differential Method for Elliptic Equations. Nauka, Moscow (1976). [in Russian]MATHGoogle Scholar
  35. 35.
    Lipnikov, K., Shashkov, M., Svyatskiy, D., et al.: Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J. Comput. Phys. 227(1), 492–512 (2007)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Sheng, Z.Q., Yuan, G.W.: An improved monotone finite volume scheme for diffusion equation on polygonal meshes. J. Comput. Phys. 231, 3739–3754 (2012)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Vallaghfie, S., Papadopoulo, T.: A trilinear immersed finite element method for solving the electroencephalography forward problem. SIAM J. Sci. Comput. 32(4), 2379–2394 (2010)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Weisz, J.: On an iterative method for the solution of discretized elliptic problems with imperfect contact condition. J. Comput. Appl. Math. 72, 319–333 (1996)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Yuan, G.W., Sheng, Z.Q.: Monotone finite volume schemes for diffusion equations on polygonal meshes. J. Comput. Phys. 227, 6288–6312 (2008)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Niceno B, Easymesh: a free two-dimensional quality mesh generator based on delaunay triangulation, Available in http://www-dinma.univ.trieste.it/nirftc/research/easymesh/Default.htm, (2001)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ScienceInner Mongolia University of Science and TechnologyBaotouPeople’s Republic of China
  2. 2.Laboratory of Computational PhysicsInstitute of Applied Physics and Computational MathematicsBeijingPeople’s Republic of China

Personalised recommendations