A High Order HDG Method for Stokes Flow in Curved Domains

  • Manuel SolanoEmail author
  • Felipe Vargas


We propose and analyze a high order hybridizable discontinuous Galerkin (HDG) method for the Stokes equations in a curved domain. It is based on approximating the domain by a polyhedral computational subdomain where an HDG solution is computed. To obtain a high order approximation of the Dirichlet boundary data in the computational domain, we employ a transferring technique based on integrating the approximation of the gradient. In addition, we first seek for a discrete pressure having zero-mean in the computational domain and then the zero-mean condition in the entire domain is recovered by a post-process that involves an extrapolation of the discrete pressure. We prove that the method provides optimal order of convergence for the approximations of the pressure, the velocity and its gradient, that is, order \(h^{k+1}\) if the local discrete spaces are constructed using polynomials of degree k and the meshsize is h. We present numerical experiments validating the method.


Curved domains Unfitted methods Discontinuous Galerkin Stokes flow 

Mathematics Subject Classification

65N30 65N12 65N15 


Supplementary material


  1. 1.
    Araya, R., Solano, M., Vega, P.: Analysis of an adaptive HDG method for the Brinkman problem. IMA J. Numer. Anal. (2018).
  2. 2.
    Barrett, J.W., Elliott, C.M.: Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces. IMA J. Numer. Anal. 7, 283–300 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bramble, J.H., Dupont, T., Thomée, V.: Projection methods for Dirichlet’s problem in approximating polygonal domains with boundary-value corrections. Math. Comput. 26(120), 869–879 (1994)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bramble, J.H., King, J.T.: A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries. Math. Comput. 63, 1–17 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bramble, J.H., King, J.T.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6, 109–138 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cesmelioglu, A., Cockburn, B., Qiu, W.: Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier–Stokes equations. Math. Comput. 86, 1643–1670 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cockburn, B., Gopalakrishnan, J.: The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. SIAM J. Numer. Anal. 47, 1092–1125 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.-J.: Analysis of HDG methods for Stokes flow. Math. Comput. 80(274), 723–760 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cockburn, B., Gupta, D., Reitich, F.: Boundary-conforming discontinuous Galerkin methods via extensions from subdomains. J. Sci. Comput. 42, 144–184 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cockburn, B., Qiu, W., Solano, M.: A priori error analysis for HDG methods using extensions from subdomains to achieve boundary-conformity. Math. Comput. 83, 665–699 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cockburn, B., Sayas, F.-J.: Divergence-conforming HDG methods for Stokes flows. Math. Comput. 83, 1571–1598 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cockburn, B., Solano, M.: Solving Dirichlet boundary-value problems on curved domains by extensions from subdomains. SIAM J. Sci. Comput. 34, A497–A519 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cockburn, B., Solano, M.: Solving convection–diffusion problems on curved domains by extensions from subdomain. J. Sci. Comput. 59(2), 512–543 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dauge, M.: Stationary Stokes and Navier–Stokes systems on two- or three-dimensional domains with corners. Part I. Linearized equations. SIAM J. Math. Anal. 20(1), 74–97 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Davis, T.A.: Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Deckelnick, K., Günther, A., Hinze, M.: Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains. SIAM J. Control Optim. 48(4), 2798–2819 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dong, H., Wang, B., Xie, Z.: An unfitted hybridizable discontinuous Galerkin method for the Poisson interface problem and its error analysis. IMA J. Numer. Anal. 37(1), 444–476 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ern, A., Di Pietro, D.A.: Mathematical aspects of discontinuous Galerkin methods. In: Mathématiques et Applications (Berlin), vol. 69. Springer, Heidelberg (2012)Google Scholar
  21. 21.
    Fu, G., Jin, Y., Qiu, W.: Parameter–free superconvergent \(H\)(div)–conforming HDG methods for the Brinkman equations. IMA J. Numer. Anal. (2018).
  22. 22.
    Gatica, G.N., Sequeira, F.A.: Analysis of an augmented HDG method for a class of quasi-Newtonian Stokes flows. J. Sci. Comput. 65, 1270–1308 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Gatica, G.N., Sequeira, F.A.: A priori and a posteriori analyses of an augmented HDG method for a class of quasi-Newtonian Stokes flows. J. Sci. Comput. 69, 1192–1250 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gatica, G.N., Sequeira, F.A.: Analysis of the HDG method for the Stokes–Darcy coupling. Numer. Methods Partial Differ. Equ. 33, 885–917 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Gatica, L.F., Sequeira, F.A.: A priori and a posteriori error analyses of an HDG method for the Brinkman problem. Comput. Math. Appl. 75, 1191–1212 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Guzman, J., Sanchez, M.A., Sarkis, M.: Higher-order finite element methods for elliptic problems with interfaces. Esaim Math. Model. Numer. Anal. 50(5), 1561–1583 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kellogg, R.B., Osborn, J.E.: A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21(4), 397–431 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kirby, R.A.: Singularity-free evaluation of collapsed-coordinate orthogonal polynomials. ACM Trans. Math. Softw. 37(1), 5 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    LeVeque, R.J., Li, Z.: Immersed interface methods for Stokes flow with elastic boundaries or surface tension. SIAM J. Sci. Comput. 18(3), 709–735 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lenoir, M.: Optimal isoparametric finite elements and errors estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23, 562–580 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Li, J., Melenk, M., Wohlmuth, B., Zou, J.: Optimal convergence of higher order finite element methods for elliptic interface problems. Appl. Numer. Math. 60, 19–37 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Mori, Y.: Convergence proof of the velocity field for a Stokes flow immersed boundary method. Commun. Pure Appl. Math. 160, 1213–1263 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199, 582–597 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Nitsche, J.: Über ein Variationsprinzip zur LBsung van Dirichlet–Problemen bei Verwendung van Teilrümen, die keinen Handbedingungen unterworfen sind. In: Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, vol. 36 (1970–1971)Google Scholar
  35. 35.
    Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10, 252–271 (1972)CrossRefzbMATHGoogle Scholar
  36. 36.
    Peterseim, D., Sauter, S.A.: The composite mini element—coarse mesh computation of Stokes flows on complicated domains. SIAM J. Numer. Anal. 46(6), 3181–3206 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Peterseim, D., Sauter, S.A.: Finite element methods for the Stokes problem on complicated domains. Comput. Methods Appl. Mech. Eng. 200, 2611–2623 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier–Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. 36, 1943–1967 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Qiu, W., Solano, M., Vega, P.: A high order HDG method for curved-interface problems via approximations from straight triangulations. J. Sci. Comput. 69(3), 1384–1407 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Rhebergen, S., Wells, G.N.: A hybridizable discontinuous Galerkin method for the Navier–Stokes equations with pointwise divergence-free velocity field. J. Sci. Comput. 76, 1484–1501 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Thomée, V.: Polygonal domain approximation in Dirichlet’s problem. J. Inst. Math. Appl. 11, 33–44 (1973)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y MatemáticasUniversidad de ConcepciónConcepciónChile
  2. 2.Centro de Investigación en Ingeniería Matemática (CI2MA)Universidad de ConcepciónConcepciónChile

Personalised recommendations