Skip to main content
Log in

Exact Simulation of the First-Passage Time of Diffusions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Since diffusion processes arise in so many different fields, efficient technics for the simulation of sample paths, like discretization schemes, represent crucial tools in applied probability. Such methods permit to obtain approximations of the first-passage times as a by-product. For efficiency reasons, it is particularly challenging to simulate directly this hitting time by avoiding to construct the whole paths. In the Brownian case, the distribution of the first-passage time is explicitly known and can be easily used for simulation purposes. The authors introduce a new rejection sampling algorithm which permits to perform an exact simulation of the first-passage time for general one-dimensional diffusion processes. The efficiency of the method, which is essentially based on Girsanov’s transformation, is described through theoretical results and numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baldi, P., Caramellino, L.: Asymptotics of hitting probabilities for general one-dimensional pinned diffusions. Ann. Appl. Probab. 12(3), 1071–1095 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benedetto, E., Sacerdote, L., Zucca, C.: A first passage problem for a bivariate diffusion process: numerical solution with an application to neuroscience when the process is Gauss–Markov. J. Comput. Appl. Math. 242, 41–52 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beskos, A., Roberts, G.O.: Exact simulation of diffusions. Ann. Appl. Probab. 15(4), 2422–2444 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beskos, A., Papaspiliopoulos, O., Roberts, G.O.: Retrospective exact simulation of diffusion sample paths with applications. Bernoulli 12(6), 1077–1098 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beskos, A., Papaspiliopoulos, O., Roberts, G.O.: A factorisation of diffusion measure and finite sample path constructions. Methodol. Comput. Appl. Probab. 10(1), 85–104 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Broadie, M., Glasserman, P., Kou, S.: A continuity correction for discrete barrier options. Math. Finance 7(4), 325–349 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buonocore, A., Nobile, A.G., Ricciardi, L.M.: A new integral equation for the evaluation of first-passage-time probability densities. Adv. Appl. Probab. 19(4), 784–800 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burkitt, A.N.: A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol. Cybern. 95(1), 1–19 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Devroye, L.: Nonuniform Random Variate Generation. Springer, New York (1986)

    Book  MATH  Google Scholar 

  10. Durbin, J.: The first-passage density of a continuous Gaussian process to a general boundary. J. Appl. Probab. 22(1), 99–122 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Durbin, J.: The first-passage density of the Brownian motion process to a curved boundary. J. Appl. Probab. 29(2), 291–304 (1992). With an appendix by D. Williams

    Article  MathSciNet  MATH  Google Scholar 

  12. Ferebee, B.: An asymptotic expansion for one-sided Brownian exit densities. Z. Wahrsch. Verw. Gebiete 63(1), 1–15 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giorno, V., Nobile, A.G., Ricciardi, L.M., Sato, S.: On the evaluation of first-passage-time probability densities via nonsingular integral equations. Adv. Appl. Probab. 21(1), 20–36 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Giraudo, M.T., Sacerdote, L.: Simulation methods in neuronal modeling. Biosystems 48, 77–83 (1998)

    Article  Google Scholar 

  15. Giraudo, M.T., Sacerdote, L.: An improved technique for the simulation of first passage times for diffusion processes. Commun. Stat. Simul. Comput. 28(4), 1135–1163 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Giraudo, M.T., Sacerdote, L., Zucca, C.: A Monte Carlo method for the simulation of first passage times of diffusion processes. Methodol. Comput. Appl. Probab. 3(2), 215–231 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gobet, E.: Weak approximation of killed diffusion using Euler schemes. Stoch. Process. Appl. 87(2), 167–197 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gobet, E., Menozzi, S.: Stopped diffusion processes: boundary corrections and overshoot. Stoch. Process. Appl. 120(2), 130–162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Herrmann, S., Tanré, E.: The first-passage time of the Brownian motion to a curved boundary: an algorithmic approach. SIAM J. Sci. Comput. 38(1), A196–A215 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu, Q., Wang, Y., Yang, X.: The hitting time density for a reflected Brownian motion. Comput. Econ. 40(1), 1–18 (2012)

    Article  MATH  Google Scholar 

  21. Ichiba, T., Kardaras, C.: Efficient estimation of one-dimensional diffusion first passage time densities via Monte Carlo simulation. J. Appl. Probab. 48(3), 699–712 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Janssen, J., Manca, O., Manca, R.: Applied Diffusion Processes from Engineering to Finance. Wiley, Hoboken (2013)

    Book  MATH  Google Scholar 

  23. Jeanblanc, M., Yor, M., Chesney, M.: Mathematical Methods for Financial Markets. Springer, London (2009)

    Book  MATH  Google Scholar 

  24. Jenkins, P.A.: Exact simulation of the sample paths of a diffusion with a finite entrance boundary. ArXiv e-prints (2013)

  25. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, vol. 113, second edn. Springer-Verlag, New York (1991). https://doi.org/10.1007/978-1-4612-0949-2

    Book  MATH  Google Scholar 

  26. Kent, J.: Some probabilistic properties of Bessel functions. Ann. Probab. 6(5), 760–770 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. Linetsky, V.: Lookback options and diffusion hitting times: a spectral expansion approach. Finance Stoch. 8, 373–398 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Navarro, D.J., Fuss, I.G.: Fast and accurate calculations for first-passage times in wiener diffusion models. J. Math. Psychol. 53, 222–230 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pieper, V., Dominé, M., Kurth, P.: Level crossing problems and drift reliability. Math. Methods Oper. Res. 45, 347–354 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pitman, J., Yor, M.: The law of the maximum of a Bessel bridge. Electron. J. Probab. 4(15), 35 (1999)

    MathSciNet  MATH  Google Scholar 

  31. Pötzelberger, K., Wang, L.: Boundary crossing probability for Brownian motion. J. Appl. Probab. 38(1), 152–164 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Redner, S.: A Guide to First-Passage Processes. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  33. Ricciardi, L.M., Sacerdote, L., Sato, S.: On an integral equation for first-passage-time probability densities. J. Appl. Probab. 21(2), 302–314 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sacerdote, L., Giraudo, M.T.: Stochastic integrate and fire models: a review on mathematical methods and their applications. In: Bachar, M., Batzel, J., Ditlevsen, S. (eds.) Stochastic Biomathematical Models, pp. 99–148. Springer, Berlin (2013)

    Chapter  MATH  Google Scholar 

  35. Sacerdote, L., Tomassetti, F.: On evaluations and asymptotic approximations of first-passage-time probabilities. Adv. Appl. Probab. 28(1), 270–284 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sacerdote, L., Tamborrino, M., Zucca, C.: First passage times of two-dimensional correlated processes: analytical results for the wiener process and a numerical method for diffusion processes. J. Comput. Appl. Math. 296, 275–292 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, L., Pötzelberger, K.: Boundary crossing probability for Brownian motion and general boundaries. J. Appl. Probab. 34(1), 54–65 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, L., Pötzelberger, K.: Crossing probabilities for diffusion processes with piecewise continuous boundaries. Methodol. Comput. Appl. Probab. 9(1), 21–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Williams, D.: Path decomposition and continuity of local time for one-dimensional diffusions. I. Proc. Lond. Math. Soc. 3(28), 738–768 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zucca, C., Tavella, P.: The clock model and its relationship with the allan and related variances. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 289–296 (2005)

    Article  Google Scholar 

  41. Zucca, C., Tavella, P., Peskir, G.: Detecting atomic clock frequency trends using an optimal stopping method. Metrologia 53(3), S89–S95 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Herrmann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrmann, S., Zucca, C. Exact Simulation of the First-Passage Time of Diffusions. J Sci Comput 79, 1477–1504 (2019). https://doi.org/10.1007/s10915-018-00900-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-00900-3

Keywords

2010 AMS Subject Classifications

Navigation