Skip to main content
Log in

Telescopic Projective Integration for Linear Kinetic Equations with Multiple Relaxation Times

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study a general, high-order, fully explicit numerical method for simulating kinetic equations with a BGK-type collision model with multiple relaxation times. In that case, the problem is stiff and its spectrum consists of multiple separated eigenvalue clusters. Projective integration methods are explicit integration schemes that first take a few small (inner) steps with a simple, explicit method, after which the solution is extrapolated forward in time over a large (outer) time step. These are very efficient schemes, provided there are only two clusters of eigenvalues, one corresponding to a single fast relaxation time scale, and one corresponding to the slow macroscopic dynamics. Here, we show how telescopic projective integration can be used to efficiently integrate kinetic equations with multiple relaxation times. Telescopic projective integration generalizes the idea of projective integration by constructing a hierarchy of projective levels. The main idea is to adjust the size of the inner time step at each level to one of the relaxation time scales. We show that the size of the outer time step, as well as the required number of inner steps at each level, does not depend on the stiffness of the problem. The computational cost of the method depends on the stiffness of the problem only via the number of projective levels. For problems with a fixed number of well-separated spectral clusters, the number of projective levels is independent of the stiffness, and the computational cost of telescopic projective integration is independent of the stiffness. For problems with a time-varying spectrum, the number of projective levels grows logarithmically with the stiffness. We illustrate numerically that, also in that case, the resulting computational cost is acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adams, M.L.: Discontinuous finite element transport solutions in thick diffusive problems. Nucl. Sci. Eng. 137(3), 298–333 (2001)

    Article  Google Scholar 

  2. Aregba-Driollet, D., Natalini, R.: Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal. 37(6), 1973–2004 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Besse, C., Goudon, T.: Derivation of a non-local model for diffusion asymptotics—application to radiative transfer problems. Commun. Comput. Phys. 8(5), 1139–1182 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)

    Article  MATH  Google Scholar 

  6. Boscarino, S., Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 35(1), 22–51 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bouchut, F.: Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Stat. Phys. 95(1–2), 113–170 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buet, C., Cordier, S.: An asymptotic preserving scheme for hydrodynamics radiative transfer models: numerics for radiative transfer. Numer. Math. 108, 199–221 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buet, C., Despres, B.: Asymptotic preserving and positive schemes for radiation hydrodynamics. J. Comput. Phys. 215, 717–740 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carrillo, J.A., Goudon, T., Lafitte, P., Vecil, F.: Numerical schemes of diffusion asymptotics and moment closures for kinetic equations. J. Sci. Comput. 36(1), 113–149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)

    Book  MATH  Google Scholar 

  12. Coulombel, J.-F., Golse, F., Goudon, T.: Diffusion approximation and entropy-based moment closure for kinetic equations. Asymptot. Anal. 45, 1–34 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Dimarco, G., Pareschi, L.: Asymptotic-preserving implicit–explicit Runge–Kutta methods for nonlinear kinetic equations. SIAM J. Numer. Anal. 51(2), 1064–1087 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dimarco, G., Pareschi, L.: Numerical methods for kinetic equations. Acta Numer. 23, 369–520 (2014)

    Article  MathSciNet  Google Scholar 

  15. Ellis, R.S., Pinsky, M.A.: The first and second fluid approximations to the Linearized Boltzmann equation. J. Math. Pures Appl. 54, 125–156 (1975)

    MathSciNet  MATH  Google Scholar 

  16. Eriksson, K., Johnson, C., Logg, A.: Explicit time-stepping for stiff ODEs. SIAM J. Sci. Comput. 25(4), 1142–1157 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Filbet, F., Jin, S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229(20), 7625–7648 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gear, C.W., Kevrekidis, I.G.: Telescopic projective methods for stiff differential equations, NEC Research Institute Report 2001-122. Technical Report (2001)

  19. Gear, C.W., Kevrekidis, I.G.: Projective methods for stiff differential equations: problems with gaps in their eigenvalue spectrum. SIAM J. Sci. Comput. 24(4), 1091–1106 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gear, C.W., Kevrekidis, I.G.: Telescopic projective methods for parabolic differential equations. J. Comput. Phys. 187(1), 95–109 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Godillon-Lafitte, P., Goudon, T.: A coupled model for radiative transfer: doppler effects, equilibrium, and nonequilibrium diffusion asymptotics. Multiscale Model. Simul. 4(4), 1245–1279 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gosse, L., Toscani, G.: Space localization and well-balanced schemes for discrete kinetic models in diffusive regimes. SIAM J. Numer. Anal. 41(2), 641–658 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gosse, L., Toscani, G.: Asymptotic-preserving & well-balanced schemes for radiative transfer and the Rosseland approximation. Numer. Math. 98, 223–250 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guermond, J.-L., Kanschat, G.: Asymptotic analysis of upwind discontinuous Galerkin approximation of the radiative transport equation in the diffusive limit. SIAM J. Numer. Anal. 48(1), 53–78 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Haack, J.R., Hauck, C.D.: Oscillatory behavior of asymptotic-preserving splitting methods for a linear model of diffusive relaxation. Kinet. Relat. Models 1(4), 573–590 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I. Springer, Berlin (1993)

    MATH  Google Scholar 

  27. Hauck, C.D., Lowrie, R.B.: Temporal regularization of the \(\text{ P }_{{\rm N}}\) equations. Multiscale Model. Simul. 7(4), 1497–1524 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21(2), 441–454 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jin, S., Pareschi, L., Toscani, G.: Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations. SIAM J. Numer. Analy. 35(6), 2405–2439 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jin, S., Pareschi, L., Toscani, G.: Uniformly accurate diffusive relaxation scheme for multiscale transport equations. SIAM J. Numer. Anal. 38(3), 913–936 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jin, S., Xin, Z.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48(3), 235–276 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kevrekidis, I.G., Gear, C.W., Hyman, J.M., Kevrekidis, P.G., Runborg, O., Theodoropoulos, C.: Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level tasks. Commun. Math. Sci. 1(4), 715–762 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kevrekidis, I.G., Samaey, G.: Equation-free multiscale computation: algorithms and applications. Ann. Rev. Phys. Chem. 60, 321–344 (2009)

    Article  Google Scholar 

  34. Klar, A.: An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35(3), 1073–1094 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Klar, A.: A numerical method for kinetic semiconductor equations in the drift-diffusion limit. SIAM J. Sci. Comput. 20(5), 1696–1712 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Klar, A.: An asymptotic preserving numerical scheme for kinetic equations in the low mach number limit. SIAM J. Numer. Anal. 36(5), 1507–1527 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lafitte, P., Lejon, A., Samaey, G.: A high-order asymptotic-preserving scheme for kinetic equations using projective integration. SIAM J. Numer. Anal. 54(1), 1–33 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lafitte, P., Melis, W., Samaey, G.: A high-order relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws. J. Comput. Phys. 340, 1–25 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lafitte, P., Samaey, G.: Asymptotic-preserving projective integration schemes for kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 34(2), 579–600 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Larsen, E.W., Morel, J.E.: Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes II. J. Comput. Phys. 83, 212–236 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lee, S.L., Gear, C.W.: Second-order accurate projective integrators for multiscale problems. J. Comput. Appl. Math. 201(1), 258–274 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lemou, M., Mieussens, L.: A new asymptotic preserving scheme based on micro–macro formulation for linear kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 31(1), 334–368 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lowrie, R.B., Morel, J.E.: Discontinuous Galerkin for hyperbolic systems with stiff relaxation. Discontinuous Galerkin Methods 11, 385–390 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. McClarren, R.G., Lowrie, R.B.: The effects of slope limiting on asymptotic-preserving numerical methods for hyperbolic conservation laws. J. Comput. Phys. 227(23), 9711–9726 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Minerbo, G.N.: Maximum entropy Eddington factors. J. Quant. Spectrosc. Radiat. Transf. 20(6), 541–545 (1978)

    Article  Google Scholar 

  46. Pomraning, G.C.: Linear Kinetic Theory and Particle Transport in Stochastic Mixtures. World Scientific, Singapore (1991)

    Book  MATH  Google Scholar 

  47. Rey, T.: A spectral study of the linearized Boltzmann equation for diffusively excited granular media (2013)

  48. Rico-Martínez, R., Gear, C.W., Kevrekidis, I.G.: Coarse projective kMC integration: forward/reverse initial and boundary value problems. J. Comput. Phys. 196(2), 474–489 (2004)

    Article  MATH  Google Scholar 

  49. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, pp. 325–432. Springer (1998)

  50. Sommeijer, B.P.: Increasing the real stability boundary of explicit methods. Comput. Math. Appl. 19(6), 37–49 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  51. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  52. Struchtrup, H.: Macroscopic Transport Equations for Rarefied Gas Flows. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  53. Vandekerckhove, C., Roose, D., Lust, K.: Numerical stability analysis of an acceleration scheme for step size constrained time integrators. J. Comput. Appl. Math. 200(2), 761–777 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Weinan, E., Engquist, B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  55. Weinan, E., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: The heterogeneous multiscale method: a review. Commun. Comput. Phys. 2(3), 367–450 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Thomas Rey (Laboratoire Paul Painlevé, Université de Lille) for providing us with clear background material on Boltzmann and BGK kinetic equations and his assistance with their linearization, which supplemented the motivation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ward Melis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melis, W., Samaey, G. Telescopic Projective Integration for Linear Kinetic Equations with Multiple Relaxation Times. J Sci Comput 76, 697–726 (2018). https://doi.org/10.1007/s10915-017-0635-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0635-0

Keywords

Navigation