Skip to main content

New Integration Methods for Perturbed ODEs Based on Symplectic Implicit Runge–Kutta Schemes with Application to Solar System Simulations

Abstract

We propose a family of integrators, flow-composed implicit Runge–Kutta methods, for perturbations of nonlinear ordinary differential equations, consisting of the composition of flows of the unperturbed part alternated with one step of an implicit Runge–Kutta (IRK) method applied to a transformed system. The resulting integration schemes are symplectic when both the perturbation and the unperturbed part are Hamiltonian and the underlying IRK scheme is symplectic. In addition, they are symmetric in time (resp. have order of accuracy r) if the underlying IRK scheme is time-symmetric (resp. of order r). The proposed new methods admit mixed precision implementation that allows us to efficiently reduce the effect of round-off errors. We particularly focus on the potential application to long-term solar system simulations, with the equations of motion of the solar system rewritten as a Hamiltonian perturbation of a system of uncoupled Keplerian equations. We present some preliminary numerical experiments with a simple point mass Newtonian 10-body model of the solar system (with the sun, the eight planets, and Pluto) written in canonical heliocentric coordinates.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Antoñana, M., Makazaga, J., Murua, A.: Efficient implementation of symplectic implicit Runge–Kutta schemes with simplified Newton iterations. Numer. Algorithms (2017). https://doi.org/10.1007/s11075-017-0367-0

  2. Antoñana, M., Makazaga, J., Murua, A.: Reducing and monitoring round-off error propagation for symplectic implicit Runge–Kutta schemes. Numer. Algorithms (2017). https://doi.org/10.1007/s11075-017-0287-z

  3. Bailey, D.H., Barrio, R., Borwein, J.M.: High-precision computation: mathematical physics and dynamics. Appl. Math. Comput. 218(20), 10106–10121 (2012). https://doi.org/10.1016/j.amc.2012.03.087

    MathSciNet  MATH  Google Scholar 

  4. Beylkin, G., Sandberg, K.: Ode solvers using band-limited approximations. J. Comput. Phys. 265, 156–171 (2014). https://doi.org/10.1016/j.jcp.2014.02.001

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhatt, A., Moore, B.E.: Structure-preserving exponential Runge–Kutta methods. SIAM J. Sci. Comput. 39(2), A593–A612 (2017). https://doi.org/10.1137/16M1071171

    Article  MathSciNet  MATH  Google Scholar 

  6. Blanes, S., Casas, F., Farres, A., Laskar, J., Makazaga, J., Murua, A.: New families of symplectic splitting methods for numerical integration in dynamical astronomy. Appl. Numer. Math. 68, 58–72 (2013). https://doi.org/10.1016/j.apnum.2013.01.003

    Article  MathSciNet  MATH  Google Scholar 

  7. Brouwer, D.: On the accumulation of errors in numerical integration. Astron. J. 46, 149–153 (1937). https://doi.org/10.1086/105423

    Article  Google Scholar 

  8. Cano, B., González-Pachón, A.: Projected explicit Lawson methods for the integration of Schrödinger equation. Numer. Methods Partial Differ. Equ. 31, 78–104 (2015). https://doi.org/10.1002/num.21895

    Article  MATH  Google Scholar 

  9. Celledoni, E., Owren, B.: Symmetric exponential integrators with an application to the cubic Schrödinger equation. Found. Comput. Math. 8, 303–317 (2008). https://doi.org/10.1007/s10208-007-9016-7

    Article  MathSciNet  MATH  Google Scholar 

  10. Celledoni, E.: Eulerian and semi-Lagrangian schemes based on commutator-free exponential integrators. Group Theory Numer. Anal. 39, 77–90 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Celledoni, E., Kometa, B.K.: Semi-Lagrangian Runge–Kutta exponential integrators for convection dominated problems. J. Sci. Comput. 41(1), 139–164 (2009). https://doi.org/10.1007/s10915-009-9291-3

    Article  MathSciNet  MATH  Google Scholar 

  12. Celledoni, E., Kometa, B.K., Verdier, O.: High order semi-Lagrangian methods for the incompressible Navier–Stokes equations. J. Sci. Comput. 66(1), 91–115 (2016). https://doi.org/10.1007/s10915-015-0015-6

    Article  MathSciNet  MATH  Google Scholar 

  13. Dongarra, J., Tomov, S., Luszczek, P., Kurzak, J., Gates, M., Yamazaki, I., Anzt, H., Haidar, A., Abdelfattah, A.: With extreme computing, the rules have changed. Comput. Sci. Eng. 19(3), 52–62 (2017). https://doi.org/10.1109/MCSE.2017.48

    Article  MATH  Google Scholar 

  14. Farrés, A., Laskar, J., Blanes, S., Casas, F., Makazaga, J., Murua, A.: High precision symplectic integrators for the solar system. Celest. Mech. Dyn. Astron. 116(2), 141–174 (2013). https://doi.org/10.1007/s10569-013-9479-6

    Article  MathSciNet  MATH  Google Scholar 

  15. Folkner, W.M., Williams, J.G., Boggs, D.H., Park, R.S., Kuchynka, P.: The planetary and lunar ephemerides DE430 and DE431. Interplanetary Network Progress Report 196, pp. 1–81. http://ilrs.gsfc.nasa.gov/docs/2014/196C.pdf (2014)

  16. Grazier, K., Newman, W., Hyman, J.M., Sharp, P.W., Goldstein, D.J.: Achieving Brouwer’s law with high-order Stormer multistep methods. ANZIAM J. 46, 786–804 (2005). https://doi.org/10.21914/anziamj.v46i0.990

    Article  MathSciNet  MATH  Google Scholar 

  17. Griewank, A.: Who invented the reverse mode of differentiation? Docu. Math. Extra Volume ISMP, 389–400. http://emis.ams.org/journals/DMJDMV/vol-ismp/52_griewank-andreas-b.pdf (2012)

  18. Griewank, A., Walther, A.: Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM (2008). https://doi.org/10.1137/1.9780898717761

    MATH  Google Scholar 

  19. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, vol. 31. Springer, Berlin (2006). https://doi.org/10.1007/3-540-30666-8

    MATH  Google Scholar 

  20. Hairer, E., McLachlan, R.I., Razakarivony, A.: Achieving Brouwer’s law with implicit Runge–Kutta methods. BIT Numer. Math. 48(2), 231–243 (2008). https://doi.org/10.1007/s10543-008-0170-3

    Article  MathSciNet  MATH  Google Scholar 

  21. Higham, N.J.: Accuracy and stability of numerical algorithms. SIAM (2002). https://doi.org/10.1137/1.9780898718027

    MATH  Google Scholar 

  22. Hochbruck, A., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010). https://doi.org/10.1017/S0962492910000048

    Article  MathSciNet  MATH  Google Scholar 

  23. Kahan, W.: Further remarks on reducing truncation errors. Commun. ACM 8(1), 40 (1965)

    Article  Google Scholar 

  24. Laskar, J.: Numerical challenges in long term integrations of the solar system. In: 2015 IEEE 22nd Symposium on Computer Arithmetic (ARITH), pp. 104–104. IEEE (2015). https://doi.org/10.1109/ARITH.2015.35

  25. Laskar, J., Fienga, A., Gastineau, M., Manche, H.: La2010: a new orbital solution for the long-term motion of the earth. Astron. Astrophys. 532, A89 (2011). https://doi.org/10.1051/0004-6361/201116836

    Article  MATH  Google Scholar 

  26. Lawson, J.D.: Generalized Runge–Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal. 4(3), 372–380 (1967). https://doi.org/10.1137/0704033

    Article  MathSciNet  MATH  Google Scholar 

  27. Linnainmaa, S.: Taylor expansion of the accumulated rounding error. BIT Numer. Math. 16(2), 146–160 (1976). https://doi.org/10.1007/BF01931367

    Article  MathSciNet  MATH  Google Scholar 

  28. McLachlan, R., Quispel, G., Tse, P.: Linearization-preserving self-adjoint and symplectic integrators. BIT Numer. Math. 49(1), 177–197 (2009). https://doi.org/10.1007/s10543-009-0214-3

    Article  MathSciNet  MATH  Google Scholar 

  29. Muller, J., Brisebarre, N., De Dinechin, F., Jeannerod, C., Lefevre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Springer, Berlin (2009). https://doi.org/10.1007/978-0-8176-4705-6

    MATH  Google Scholar 

  30. Sanz Serna, J., Calvo, M.: Numerical Hamiltonian Problems. Chapman and Hall, London (1994)

    Book  MATH  Google Scholar 

  31. Sofroniou, M., Spaletta, G.: Derivation of symmetric composition constants for symmetric integrators. Optim. Methods Softw. 20(4–5), 597–613 (2005). https://doi.org/10.1080/10556780500140664

    Article  MathSciNet  MATH  Google Scholar 

  32. Touma, J.R., Wisdom, J.: The chaotic obliquity of Mars. Ph.D. thesis, Department of Mathematics, Massachusetts Institute of Technology (1993)

  33. Wisdom, J., Holman, M.: Symplectic maps for the n-body problem. Astron. J. 102, 1528–1538 (1991). https://doi.org/10.1086/115978

    Article  Google Scholar 

Download references

Acknowledgements

M. Antoñana, J. Makazaga, and A. Murua have received funding from the Project of the Spanish Ministry of Economy and Competitiveness with Reference MTM2016-76329-R (AEI/FEDER, EU), from the Project MTM2013-46553-C3-2-P from Spanish Ministry of Economy and Trade, and as part of the Consolidated Research Group IT649-13 by the Basque Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikel Antoñana.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antoñana, M., Makazaga, J. & Murua, A. New Integration Methods for Perturbed ODEs Based on Symplectic Implicit Runge–Kutta Schemes with Application to Solar System Simulations. J Sci Comput 76, 630–650 (2018). https://doi.org/10.1007/s10915-017-0634-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0634-1

Keywords