Abstract
We propose a family of integrators, flow-composed implicit Runge–Kutta methods, for perturbations of nonlinear ordinary differential equations, consisting of the composition of flows of the unperturbed part alternated with one step of an implicit Runge–Kutta (IRK) method applied to a transformed system. The resulting integration schemes are symplectic when both the perturbation and the unperturbed part are Hamiltonian and the underlying IRK scheme is symplectic. In addition, they are symmetric in time (resp. have order of accuracy r) if the underlying IRK scheme is time-symmetric (resp. of order r). The proposed new methods admit mixed precision implementation that allows us to efficiently reduce the effect of round-off errors. We particularly focus on the potential application to long-term solar system simulations, with the equations of motion of the solar system rewritten as a Hamiltonian perturbation of a system of uncoupled Keplerian equations. We present some preliminary numerical experiments with a simple point mass Newtonian 10-body model of the solar system (with the sun, the eight planets, and Pluto) written in canonical heliocentric coordinates.
This is a preview of subscription content, access via your institution.










References
Antoñana, M., Makazaga, J., Murua, A.: Efficient implementation of symplectic implicit Runge–Kutta schemes with simplified Newton iterations. Numer. Algorithms (2017). https://doi.org/10.1007/s11075-017-0367-0
Antoñana, M., Makazaga, J., Murua, A.: Reducing and monitoring round-off error propagation for symplectic implicit Runge–Kutta schemes. Numer. Algorithms (2017). https://doi.org/10.1007/s11075-017-0287-z
Bailey, D.H., Barrio, R., Borwein, J.M.: High-precision computation: mathematical physics and dynamics. Appl. Math. Comput. 218(20), 10106–10121 (2012). https://doi.org/10.1016/j.amc.2012.03.087
Beylkin, G., Sandberg, K.: Ode solvers using band-limited approximations. J. Comput. Phys. 265, 156–171 (2014). https://doi.org/10.1016/j.jcp.2014.02.001
Bhatt, A., Moore, B.E.: Structure-preserving exponential Runge–Kutta methods. SIAM J. Sci. Comput. 39(2), A593–A612 (2017). https://doi.org/10.1137/16M1071171
Blanes, S., Casas, F., Farres, A., Laskar, J., Makazaga, J., Murua, A.: New families of symplectic splitting methods for numerical integration in dynamical astronomy. Appl. Numer. Math. 68, 58–72 (2013). https://doi.org/10.1016/j.apnum.2013.01.003
Brouwer, D.: On the accumulation of errors in numerical integration. Astron. J. 46, 149–153 (1937). https://doi.org/10.1086/105423
Cano, B., González-Pachón, A.: Projected explicit Lawson methods for the integration of Schrödinger equation. Numer. Methods Partial Differ. Equ. 31, 78–104 (2015). https://doi.org/10.1002/num.21895
Celledoni, E., Owren, B.: Symmetric exponential integrators with an application to the cubic Schrödinger equation. Found. Comput. Math. 8, 303–317 (2008). https://doi.org/10.1007/s10208-007-9016-7
Celledoni, E.: Eulerian and semi-Lagrangian schemes based on commutator-free exponential integrators. Group Theory Numer. Anal. 39, 77–90 (2005)
Celledoni, E., Kometa, B.K.: Semi-Lagrangian Runge–Kutta exponential integrators for convection dominated problems. J. Sci. Comput. 41(1), 139–164 (2009). https://doi.org/10.1007/s10915-009-9291-3
Celledoni, E., Kometa, B.K., Verdier, O.: High order semi-Lagrangian methods for the incompressible Navier–Stokes equations. J. Sci. Comput. 66(1), 91–115 (2016). https://doi.org/10.1007/s10915-015-0015-6
Dongarra, J., Tomov, S., Luszczek, P., Kurzak, J., Gates, M., Yamazaki, I., Anzt, H., Haidar, A., Abdelfattah, A.: With extreme computing, the rules have changed. Comput. Sci. Eng. 19(3), 52–62 (2017). https://doi.org/10.1109/MCSE.2017.48
Farrés, A., Laskar, J., Blanes, S., Casas, F., Makazaga, J., Murua, A.: High precision symplectic integrators for the solar system. Celest. Mech. Dyn. Astron. 116(2), 141–174 (2013). https://doi.org/10.1007/s10569-013-9479-6
Folkner, W.M., Williams, J.G., Boggs, D.H., Park, R.S., Kuchynka, P.: The planetary and lunar ephemerides DE430 and DE431. Interplanetary Network Progress Report 196, pp. 1–81. http://ilrs.gsfc.nasa.gov/docs/2014/196C.pdf (2014)
Grazier, K., Newman, W., Hyman, J.M., Sharp, P.W., Goldstein, D.J.: Achieving Brouwer’s law with high-order Stormer multistep methods. ANZIAM J. 46, 786–804 (2005). https://doi.org/10.21914/anziamj.v46i0.990
Griewank, A.: Who invented the reverse mode of differentiation? Docu. Math. Extra Volume ISMP, 389–400. http://emis.ams.org/journals/DMJDMV/vol-ismp/52_griewank-andreas-b.pdf (2012)
Griewank, A., Walther, A.: Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM (2008). https://doi.org/10.1137/1.9780898717761
Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, vol. 31. Springer, Berlin (2006). https://doi.org/10.1007/3-540-30666-8
Hairer, E., McLachlan, R.I., Razakarivony, A.: Achieving Brouwer’s law with implicit Runge–Kutta methods. BIT Numer. Math. 48(2), 231–243 (2008). https://doi.org/10.1007/s10543-008-0170-3
Higham, N.J.: Accuracy and stability of numerical algorithms. SIAM (2002). https://doi.org/10.1137/1.9780898718027
Hochbruck, A., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010). https://doi.org/10.1017/S0962492910000048
Kahan, W.: Further remarks on reducing truncation errors. Commun. ACM 8(1), 40 (1965)
Laskar, J.: Numerical challenges in long term integrations of the solar system. In: 2015 IEEE 22nd Symposium on Computer Arithmetic (ARITH), pp. 104–104. IEEE (2015). https://doi.org/10.1109/ARITH.2015.35
Laskar, J., Fienga, A., Gastineau, M., Manche, H.: La2010: a new orbital solution for the long-term motion of the earth. Astron. Astrophys. 532, A89 (2011). https://doi.org/10.1051/0004-6361/201116836
Lawson, J.D.: Generalized Runge–Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal. 4(3), 372–380 (1967). https://doi.org/10.1137/0704033
Linnainmaa, S.: Taylor expansion of the accumulated rounding error. BIT Numer. Math. 16(2), 146–160 (1976). https://doi.org/10.1007/BF01931367
McLachlan, R., Quispel, G., Tse, P.: Linearization-preserving self-adjoint and symplectic integrators. BIT Numer. Math. 49(1), 177–197 (2009). https://doi.org/10.1007/s10543-009-0214-3
Muller, J., Brisebarre, N., De Dinechin, F., Jeannerod, C., Lefevre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Springer, Berlin (2009). https://doi.org/10.1007/978-0-8176-4705-6
Sanz Serna, J., Calvo, M.: Numerical Hamiltonian Problems. Chapman and Hall, London (1994)
Sofroniou, M., Spaletta, G.: Derivation of symmetric composition constants for symmetric integrators. Optim. Methods Softw. 20(4–5), 597–613 (2005). https://doi.org/10.1080/10556780500140664
Touma, J.R., Wisdom, J.: The chaotic obliquity of Mars. Ph.D. thesis, Department of Mathematics, Massachusetts Institute of Technology (1993)
Wisdom, J., Holman, M.: Symplectic maps for the n-body problem. Astron. J. 102, 1528–1538 (1991). https://doi.org/10.1086/115978
Acknowledgements
M. Antoñana, J. Makazaga, and A. Murua have received funding from the Project of the Spanish Ministry of Economy and Competitiveness with Reference MTM2016-76329-R (AEI/FEDER, EU), from the Project MTM2013-46553-C3-2-P from Spanish Ministry of Economy and Trade, and as part of the Consolidated Research Group IT649-13 by the Basque Government.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Antoñana, M., Makazaga, J. & Murua, A. New Integration Methods for Perturbed ODEs Based on Symplectic Implicit Runge–Kutta Schemes with Application to Solar System Simulations. J Sci Comput 76, 630–650 (2018). https://doi.org/10.1007/s10915-017-0634-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-017-0634-1