Skip to main content
Log in

Efficient Implementation of Rational Approximations to Fractional Differential Operators

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper deals with some numerical issues about the rational approximation to fractional differential operators provided by the Padé approximants. In particular, the attention is focused on the fractional Laplacian and on the Caputo’s derivative which, in this context, occur into the definition of anomalous diffusion problems and of time fractional differential equations (FDEs), respectively. The paper provides the algorithms for an efficient implementation of the IMEX schemes for semi-discrete anomalous diffusion problems and of the short-memory-FBDF methods for Caputo’s FDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akrivis, G., Crouzeix, M., Makridakis, C.: Implicit–explicit multistep finite element methods for nonlinear parabolic problems. Math. Comput. 67, 457–477 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akrivis, G., Crouzeix, M., Makridakis, C.: Implicit–explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82, 521–541 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aceto, L., Magherini, C., Novati, P.: On the construction and properties of \(m\)-step methods for FDEs. SIAM J. Sci. Comput. 37, A653–A675 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aceto, L., Novati, P.: Rational approximation to the fractional Laplacian operator in reaction–diffusion problems. SIAM J. Sci. Comput. 39, A214–A228 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benzi, M., Bertaccini, D.: Approximate inverse preconditioning for shifted linear systems. BIT Numer. Math. 43, 231–244 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baffet, D., Hesthaven, J.S.: A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55, 496–520 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bini, D.A., Higham, N.J., Meini, B.: Algorithms for the matrix pth root. Numer. Algorithms 39, 349–378 (2005)

    Article  MathSciNet  Google Scholar 

  8. Crouzeix, M.: Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques. Numer. Math. 35, 257–276 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frommer, A., Güttel, S., Schweitzer, M.: Efficient and stable Arnoldi restarts for matrix functions based on quadrature. SIAM J. Matrix Anal. Appl. 35, 661–683 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gomilko, O., Greco, F., Ziȩtak, K.: A Padé family of iterations for the matrix sign function and related problems. Numer. Linear Algebra Appl. 19, 585–605 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems. Springer Series in Computational Mathematics, vol. 8, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  12. Hale, N., Townsend, A.: Fast and accurate computation of Gauss–Legendre and Gauss–Jacobi quadrature nodes and weights. SIAM J. Sci. Comput. 35, A652–A672 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Higham, N.J.: Functions of Matrices. Theory and Computation. SIAM, Philadelphia, PA (2008)

    Book  MATH  Google Scholar 

  14. Ilić, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation I. Fract. Calc. Appl. Anal. 8, 323–341 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Ilić, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation II - with nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal. 9, 333–349 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Lubich, C.: Discretized fractional calculus. SlAM J. Math. Anal. 17, 704–719 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moret, I.: Rational Lanczos approximations to the matrix square root and related functions. Numer. Linear Alg. Appl. 16, 431–445 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Novati, P.: Numerical approximation to the fractional derivative operator. Numer. Math. 127, 539–566 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press, Inc., San Diego, CA (1999)

    MATH  Google Scholar 

  20. Podlubny, I.: Matrix approach to discrete fractional calculus. Fract. Calc. Appl. Anal. 3, 359–386 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Prudnikov, A.P., Brychkov, YuA, Marichev, O.I.: Integrals and Series, More Special Functions, vol. 3. Gordon and Breach Science Publishers, New York (1990)

    MATH  Google Scholar 

  22. Van der Voorst, H.A.: An iterative solution method for solving \(f(A)x=b\), using Krylov subspace information obtained for the symmetric positive definite matrix \(A\). J. Comput. Appl. Math. 18, 249–263 (1987)

    Article  MathSciNet  Google Scholar 

  23. Yang, Q., Liu, F., Turner, I.: Stability and convergence of an effective numerical method for the time–space Fractional Fokker–Planck equation with a nonlinear source term. Int. J. Differ. Equ. 2010, 464321 (2010). https://doi.org/10.1155/2010/464321

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Aceto.

Additional information

This work was partially supported by GNCS-INdAM, University of Pisa (Grant PRA_2017_05) and FRA-University of Trieste.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aceto, L., Novati, P. Efficient Implementation of Rational Approximations to Fractional Differential Operators. J Sci Comput 76, 651–671 (2018). https://doi.org/10.1007/s10915-017-0633-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0633-2

Keywords

Mathematics Subject Classification

Navigation