Boley, D.: Local linear convergence of the alternating direction method of multipliers on quadratic or linear programs. SIAM J. Optim. 23(4), 2183–2207 (2013)
MathSciNet
Article
MATH
Google Scholar
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)
Article
MATH
Google Scholar
Cai, X., Han, D., Yuan, X.: On the convergence of the direct extension of ADMM for three-block separable convex minimization models with one strongly convex function. Comput. Optim. Appl. 66(1), 39–73 (2017)
MathSciNet
Article
MATH
Google Scholar
Chen, C., He, B., Ye, Y., Yuan, X.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Program. 155, 57–79 (2016)
MathSciNet
Article
MATH
Google Scholar
Chen, C., Shen, Y., You, Y.: On the convergence analysis of the alternating direction method of multipliers with three blocks. Abstr. Appl. Anal. Article ID 183961 (2013)
Davis, D., Yin, W.: A three-operator splitting scheme and its optimization applications, pp. 15–13. Technical Report, UCLA CAM Report (2015)
Deng, W., Lai, M., Peng, Z., Yin, W.: Parallel multi-block ADMM with \(o(1/k)\) convergence. J. Sci. Comput. 71(2), 712–736 (2017)
MathSciNet
Article
MATH
Google Scholar
Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66(3), 889–916 (2016)
MathSciNet
Article
MATH
Google Scholar
Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)
MathSciNet
Article
MATH
Google Scholar
Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. North-Holland, Amsterdam (1983)
MATH
Google Scholar
Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Solution of Boundary Value Problems. North-Holland, Amsterdam (1983)
Google Scholar
Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)
Book
MATH
Google Scholar
Han, D., Yuan, X.: A note on the alternating direction method of multipliers. J. Optim. Theory Appl. 155(1), 227–238 (2012)
MathSciNet
Article
MATH
Google Scholar
He, B., Hou, L., Yuan, X.: On full Jacobian decomposition of the augmented Lagrangian method for separable convex programming. SIAM J. Optim. 25(4), 2274–2312 (2015)
MathSciNet
Article
MATH
Google Scholar
He, B., Tao, M., Yuan, X.: Alternating direction method with Gaussian back substitution for separable convex programming. SIAM J. Optim. 22, 313–340 (2012)
MathSciNet
Article
MATH
Google Scholar
He, B., Tao, M., Yuan, X.: A splitting method for separable convex programming. IMA J. Numer. Anal. 35(1), 394–426 (2015)
MathSciNet
Article
MATH
Google Scholar
He, B., Tao, M., Yuan, X.: Convergence rate and iteration complexity on the alternating direction method of multipliers with a substitution procedure for separable convex programming. Math. Oper. Res. 42(3), 662–691 (2017)
MathSciNet
Article
MATH
Google Scholar
He, B., Yuan, X.: On the \({O}(1/n)\) convergence rate of Douglas-Rachford alternating direction method. SIAM J. Numer. Anal. 50, 700–709 (2012)
MathSciNet
Article
MATH
Google Scholar
Hong, M., Chang, T.-H., Wang, X., Razaviyayn, M., Ma, S., Luo, Z.-Q.: A block successive upper bound minimization method of multipliers for linearly constrained convex optimization. arXiv preprint arXiv:1401.7079 (2014)
Hong, M., Luo, Z.-Q.: On the linear convergence of the alternating direction method of multipliers. Math. Program. 162(1), 165–199 (2017)
MathSciNet
Article
MATH
Google Scholar
Hong, M., Luo, Z.-Q., Razaviyayn, M.: Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J. Optim. 26(1), 337–364 (2016)
MathSciNet
Article
MATH
Google Scholar
Li, G., Pong, T.: Global convergence of splitting methods for nonconvex composite optimization. SIAM J. Optim. 25, 2434–2460 (2015)
MathSciNet
Article
MATH
Google Scholar
Li, M., Sun, D., Toh, K.-C.: A convergent 3-block semi-proximal ADMM for convex minimization problems with one strongly convex block. Asia Pac. J. Oper. Res. 32(3), 1550024 (2015)
MathSciNet
Article
MATH
Google Scholar
Li, X., Ng, M.K., Yuan, X.: Median filtering-based methods for static background extraction from surveillance video. Numer. Linear Algebra Appl. 22(5), 845–865 (2015)
MathSciNet
Article
MATH
Google Scholar
Lin, T., Ma, S., Zhang, S.: On the global linear convergence of the ADMM with multiblock variables. SIAM J. Optim. 25(3), 1478–1497 (2015)
MathSciNet
Article
MATH
Google Scholar
Lin, T., Ma, S., Zhang, S.: On the sublinear convergence rate of multi-block ADMM. J. Oper. Res. Soc. China 3(3), 251–274 (2015)
MathSciNet
Article
MATH
Google Scholar
Lin, T., Ma, S., Zhang, S.: Iteration complexity analysis of multi-block ADMM for a family of convex minimization without strong convexity. J. Sci. Comput. 69, 52–81 (2016)
MathSciNet
Article
MATH
Google Scholar
Lin, Z., Chen, M., Wu, L., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. UIUC Technical Report UILU-ENG-09-2215. arXiv:1009.5055v2 (2009)
Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)
MathSciNet
Article
MATH
Google Scholar
Ma, S., Johnson, D., Ashby, C., Xiong, D., Cramer, C.L., Moore, J.H., Zhang, S., Huang, X.: SPARCoC: a new framework for molecular pattern discovery and cancer gene identification. PLoS ONE 10(3), e0117135 (2015)
Article
Google Scholar
Monteiro, R.D.C., Svaiter, B.F.: Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers. SIAM J. Optim. 23, 475–507 (2013)
MathSciNet
Article
MATH
Google Scholar
Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2233–2246 (2012)
Article
Google Scholar
Sun, D., Toh, K.-C., Yang, L.: A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints. SIAM J. Optim. 25, 882–915 (2015)
MathSciNet
Article
MATH
Google Scholar
Sun, R., Luo, Z.-Q., Ye, Y.: On the expected convergence of randomly permuted ADMM. https://arxiv.org/abs/1503.06387 (2015)
Tao, M., Yuan, X.: Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J. Optim. 21, 57–81 (2011)
MathSciNet
Article
MATH
Google Scholar
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc B 58(1), 267–288 (1996)
MathSciNet
MATH
Google Scholar
Wang, X., Hong, M., Ma, S., Luo, Z.-Q.: Solving multiple-block separable convex minimization problems using two-block alternating direction method of multipliers. Pac. J. Optim. 11(4), 645–667 (2015)
MathSciNet
MATH
Google Scholar
Waters, A., Sankaranarayanan, A., Baraniuk, R.: Sparcs: recovering low-rank and sparse matrices from compressive measurements. In: NIPS (2011)
Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented Lagrangian methods for semidefinite programming. Math. Program. Comput. 2, 203–230 (2010)
MathSciNet
Article
MATH
Google Scholar
Wright, J., Ganesh, A., Min, K., Ma, Y.: Compressive principal component pursuit. Inf. Inference 2(1), 32–68 (2013)
Google Scholar
Yang, J., Zhang, Y.: Alternating direction algorithms for \(\ell _1\) problems in compressive sensing. SIAM J. Sci. Comput. 33(1), 250–278 (2011)
MathSciNet
Article
Google Scholar
Zhou, Z., Li, X., Wright, J., Candès, E.J., Ma, Y.: Stable principal component pursuit. In: Proceedings of International Symposium on Information Theory (2010)