Skip to main content
Log in

Higher-Order Adaptive Finite Difference Methods for Fully Nonlinear Elliptic Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We introduce generalised finite difference methods for solving fully nonlinear elliptic partial differential equations. Methods are based on piecewise Cartesian meshes augmented by additional points along the boundary. This allows for adaptive meshes and complicated geometries, while still ensuring consistency, monotonicity, and convergence. We describe an algorithm for efficiently computing the non-traditional finite difference stencils. We also present a strategy for computing formally higher-order convergent methods. Computational examples demonstrate the efficiency, accuracy, and flexibility of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Awanou, G.: Standard finite elements for the numerical resolution of the elliptic Monge–Ampère equation: classical solutions. IMA J. Numer. Anal. 35(3), 1150–1166 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4(3), 271–283 (1991)

    MathSciNet  MATH  Google Scholar 

  3. Benamou, J.D., Froese, B.D., Oberman, A.M.: Two numerical methods for the elliptic Monge–Ampère equation. M2AN Math. Model. Numer. Anal. 44(4), 737–758 (2010). doi:10.1051/m2an/2010017

    Article  MathSciNet  MATH  Google Scholar 

  4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry, 3rd edn. Springer, Berlin (2008). doi:10.1007/978-3-540-77974-2. (Algorithms and applications)

    Book  MATH  Google Scholar 

  5. Böhmer, K.: On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46(3), 1212–1249 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, S.C., Gudi, T., Neilan, M., Sung, L.Y.: \({C}^0\) penalty methods for the fully nonlinear Monge–Ampère equation. Math. Comput. 80(276), 1979–1995 (2011)

    Article  MATH  Google Scholar 

  7. Budd, C.J., Williams, J.F.: Moving mesh generation using the parabolic Monge–Ampère equation. SIAM J. Sci. Comput. 31(5), 3438–3465 (2009). doi:10.1137/080716773

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L.A., Milman, M.: Monge Ampère Equation: Applications to Geometry and Optimization: NSF-CBMS Conference on the Monge Ampère Equation, Applications to Geometry and Optimization, July 9–13, 1997, Florida Atlantic University, vol. 226. American Mathematical Society (1999)

  9. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cullen, M.J.P., Norbury, J., Purser, R.J.: Generalised Lagrangian solutions for atmospheric and oceanic flows. SIAM J. Appl. Math. 51(1), 20–31 (1991). doi:10.1137/0151002

    Article  MathSciNet  MATH  Google Scholar 

  11. Dean, E.J., Glowinski, R.: Numerical methods for fully nonlinear elliptic equations of the Monge–Ampère type. Comput. Methods Appl. Mech. Eng. 195(13–16), 1344–1386 (2006)

    Article  MATH  Google Scholar 

  12. Engquist, B., Froese, B.D.: Application of the Wasserstein metric to seismic signals. Commun. Math. Sci. 12(5), 979–988 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Commun. Pure Appl. Math. 35(3), 333–363 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, X., Neilan, M.: Vanishing moment method and moment solutions for fully nonlinear second order partial differential equations. J. Sci. Comput. 38(1), 74–98 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Finn, J.M., Delzanno, G.L., Chacón, L.: Grid generation and adaptation by Monge–Kantorovich optimization in two and three dimensions. In: Proceedings of the 17th International Meshing Roundtable, pp. 551–568 (2008). doi:10.1007/978-3-540-87921-3_33

  16. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, vol. 25. Springer, Berlin (2006)

    MATH  Google Scholar 

  17. Frisch, U., Matarrese, S., Mohayaee, R., Sobolevski, A.: A reconstruction of the initial conditions of the universe by optimal mass transportation. Nature 417, 260–262 (2002). doi:10.1038/417260a

    Article  Google Scholar 

  18. Froese, B.D.: A numerical method for the elliptic Monge–Ampère equation with transport boundary conditions. SIAM J. Sci. Comput. 34(3), A1432–A1459 (2012)

    Article  MATH  Google Scholar 

  19. Froese, B.D.: Convergence approximation of non-continuous surfaces of prescribed Gaussian curvature. Communications on Pure and Applied Analysis. https://arxiv.org/pdf/1601.06315.pdf (to appear)

  20. Froese, B.D.: Meshfree finite difference approximations for functions of the eigenvalues of the Hessian. Numer. Math. (2017). doi:10.1007/s00211-017-0898-2

    Google Scholar 

  21. Froese, B.D., Oberman, A.M.: Convergent filtered schemes for the Monge–Ampère partial differential equation. SIAM J. Numer. Anal. 51(1), 423–444 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Glimm, T., Oliker, V.: Optical design of single reflector systems and the Monge–Kantorovich mass transfer problem. J. Math. Sci. (N. Y.) 117(3), 4096–4108 (2003). doi:10.1023/A:1024856201493. (Nonlinear problems and function theory)

    Article  MathSciNet  MATH  Google Scholar 

  23. Loeper, G., Rapetti, F.: Numerical solution of the Monge–Ampère equation by a Newton’s algorithm. C. R. Math. Acad. Sci. Paris 340(4), 319–324 (2005). doi:10.1016/j.crma.2004.12.018

    Article  MathSciNet  MATH  Google Scholar 

  24. Oberman, A.M.: Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–Jacobi equations and free boundary problems. SIAM J. Numer. Anal. 44(2), 879–895 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Oberman, A.M.: Computing the convex envelope using a nonlinear partial differential equation. Math. Models Methods Appl. Sci. 18(5), 759–780 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Oberman, A.M.: Wide stencil finite difference schemes for the elliptic Monge–Ampère equation and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst. Ser. B 10(1), 221–238 (2008). doi:10.3934/dcdsb.2008.10.221

    Article  MathSciNet  MATH  Google Scholar 

  27. Osher, S., Paragios, N.: Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer, Berlin (2003)

    MATH  Google Scholar 

  28. Saumier, L.P., Agueh, M., Khouider, B.: An efficient numerical algorithm for the L2 optimal transport problem with periodic densities. IMA J. Appl. Math. 80(1), 135–157 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Smears, I., Suli, E.: Discontinuous Galerkin finite element approximation of Hamilton–Jacobi–Bellman equations with Cordes coefficients. SIAM J. Numer. Anal. 52(2), 993–1016 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sulman, M., Williams, J.F., Russell, R.D.: Optimal mass transport for higher dimensional adaptive grid generation. J. Comput. Phys. 230(9), 3302–3330 (2011). doi:10.1016/j.jcp.2011.01.025

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Adam Oberman for helpful discussions and support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brittany Froese Hamfeldt.

Additional information

The first author was partially supported by NSF DMS-1619807. The second author was partially supported by NSERC Discovery Grant RGPIN-2016-03922 and by Fundação para a Ciência e Tecnologia (FCT) Doctoral Grant (SFRH/BD/84041/2012).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamfeldt, B.F., Salvador, T. Higher-Order Adaptive Finite Difference Methods for Fully Nonlinear Elliptic Equations. J Sci Comput 75, 1282–1306 (2018). https://doi.org/10.1007/s10915-017-0586-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0586-5

Keywords

Mathematics Subject Classification

Navigation