Journal of Scientific Computing

, Volume 75, Issue 1, pp 560–595 | Cite as

An Equilibrated Fluxes Approach to the Certified Descent Algorithm for Shape Optimization Using Conforming Finite Element and Discontinuous Galerkin Discretizations

  • Matteo GiacominiEmail author


The certified descent algorithm (CDA) is a gradient-based method for shape optimization which certifies that the direction computed using the shape gradient is a genuine descent direction for the objective functional under analysis. It relies on the computation of an upper bound of the error introduced by the finite element approximation of the shape gradient. In this paper, we present a goal-oriented error estimator which depends solely on local quantities and is fully-computable. By means of the equilibrated fluxes approach, we construct a unified strategy valid for both conforming finite element approximations and discontinuous Galerkin discretizations. The new variant of the CDA is tested on the inverse identification problem of electrical impedance tomography: both its ability to identify a genuine descent direction at each iteration and its reliable stopping criterion are confirmed.


Shape optimization Certified descent algorithm A posteriori error estimator Equilibrated fluxes Conforming finite element Discontinuous Galerkin Electrical impedance tomography 

Mathematics Subject Classification

49Q10 65M60 65N15 65N21 



The author expresses his sincere gratitude to Alexandre Ern for the useful advices and to Olivier Pantz for many fruitful discussions and for carefully reading the manuscript. The author wishes to thank the anonymous reviewers for their comments that helped to greatly improve the manuscript. Part of this work has been developed during a stay of the author at the Laboratoire J. A. Dieudonné at Université de Nice-Sophia Antipolis whose support is kindly acknowledged.


  1. 1.
    Afraites, L., Dambrine, M., Kateb, D.: On second order shape optimization methods for electrical impedance tomography. SIAM J. Control Optim. 47(3), 1556–1590 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ainsworth, M.: A posteriori error estimation for discontinuous Galerkin finite element approximation. SIAM J. Numer. Anal. 45(4), 1777–1798 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis. A Wiley-Interscience publication. Wiley, Hoboken (2000)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ainsworth, M., Rankin, R.: Guaranteed computable bounds on quantities of interest in finite element computations. Int. J. Numer. Meth. Eng. 89(13), 1605–1634 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Alauzet, F., Mohammadi, B., Pironneau, O.: Mesh adaptivity and optimal shape design for aerospace. In: Buttazzo, G., Frediani, A. (eds.) Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, Springer Optimization and Its Applications, pp. 323–337. Springer, New York (2012)Google Scholar
  6. 6.
    Allaire, G.: Conception Optimale de Structures, Mathématiques & Applications, vol. 58. Springer, Berlin (2007)zbMATHGoogle Scholar
  7. 7.
    Allaire, G., Pantz, O.: Structural optimization with FreeFem++. Struct. Multidiscip. Optim. 32(3), 173–181 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ammari, H., Bossy, E., Garnier, J., Seppecher, L.: Acousto-electromagnetic tomography. SIAM J. Appl. Math. 72(5), 1592–1617 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Azegami, H., Kaizu, S., Shimoda, M., Katamine, E.: Irregularity of shape optimization problems and an improvement technique. In: Hernandez, S., Brebbia, C. (eds.) 5th International Conference on Computer Aided Optimum Design of Structures (OPTI 97), pp. 309–326. Computational Mechanics Publications Ltd, Rome, Italy (1997)Google Scholar
  10. 10.
    Banichuk, N.V., Barthold, F.J., Falk, A., Stein, E.: Mesh refinement for shape optimization. Struct. Optim. 9, 46–51 (1995)CrossRefzbMATHGoogle Scholar
  11. 11.
    Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013)CrossRefzbMATHGoogle Scholar
  12. 12.
    Borcea, L.: Electrical impedance tomography. Inverse Probl. 18(6), R99 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Braess, D., Fraunholz, T., Hoppe, R.H.W.: An equilibrated a posteriori error estimator for the interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 52(4), 2121–2136 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Braess, D., Schöberl, J.: Equilibrated residual error estimator for edge elements. Math. Comput. 77(262), 651–672 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Burman, E., Zunino, P.: A domain decomposition method based on weighted interior penalties for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 44(4), 1612–1638 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Calderón, A.: On an inverse boundary value problem. In: Seminar on Numerical Analysis and its Applications to Continuum Physics, pp. 65–73. Soc. Brasileira de Matemática, Rio de Janeiro (1980). Reprinted at Comput. Appl. Math. 25(2–3), 133–138 (2006)Google Scholar
  17. 17.
    Carpio, A., Rapún, M.L.: Hybrid topological derivative and gradient-based methods for electrical impedance tomography. Inverse Probl. 28(9), 095,010, 22 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Carstensen, C., Merdon, C.: Effective postprocessing for equilibration a posteriori error estimators. Numer. Math. 123(3), 425–459 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Céa, J.: Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût. ESAIM Math. Model Numer. 20(3), 371–402 (1986)CrossRefzbMATHGoogle Scholar
  20. 20.
    Cheney, M., Isaacson, D., Newell, J.: Electrical impedance tomography. SIAM Rev. 41, 85–101 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Chung, E., Chan, T., Tai, X.C.: Electrical impedance tomography using level set representation and total variational regularization. J. Comput. Phys. 205(1), 357–372 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Cochez-Dhondt, S., Nicaise, S.: Equilibrated error estimators for discontinuous Galerkin methods. Numer. Methods Partial Differ. Equ. 24(5), 1236–1252 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Codina, R., Baiges, J.: Weak imposition of essential boundary conditions in the finite element approximation of elliptic problems with non-matching meshes. Int. J. Numer. Methods Eng. 104(7), 624–654 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Destuynder, P., Métivet, B.: Explicit error bounds in a conforming finite element method. Math. Comput. 68(228), 1379–1396 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Di Pietro, D., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques & Applications, vol. 69. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  26. 26.
    Dogǎn, G., Morin, P., Nochetto, R., Verani, M.: Discrete gradient flows for shape optimization and applications. Comput. Methods Appl. Mech. Eng. 196(3740), 3898–3914 (2007). Special Issue Honoring the 80th Birthday of Professor Ivo BabukaMathSciNetzbMATHGoogle Scholar
  27. 27.
    Eppler, K., Harbrecht, H.: A regularized Newton method in electrical impedance tomography using shape Hessian information. Control Cybern. 34(1), 203–225 (2005)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Ern, A., Nicaise, S., Vohralík, M.: An accurate \(\mathbf{H}(\text{ div })\) flux reconstruction for discontinuous Galerkin approximations of elliptic problems. C. R. Acad. Sci. I-Math. 345(12), 709–712 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ern, A., Stephansen, A., Vohralík, M.: Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems. J. Comput. Appl. Math. 234(1), 114–130 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Ern, A., Stephansen, A., Zunino, P.: A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal. 29(2), 235–256 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Ern, A., Vohralík, M.: Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53(2), 1058–1081 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Giacomini, M., Pantz, O., Trabelsi, K.: An a posteriori error estimator for shape optimization: application to EIT. J. Phys Conf. Ser. 657(1), 012,004 (2015)CrossRefGoogle Scholar
  33. 33.
    Giacomini, M., Pantz, O., Trabelsi, K.: Certified descent algorithm for shape optimization driven by fully-computable a posteriori error estimators. ESAIM: Control Optim. Calc. Var. 23(3), 977–1001 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Grätsch, T., Bathe, K.J.: Goal-oriented error estimation in the analysis of fluid flows with structural interactions. Comput. Methods Appl. Mech. 195, 5673–5684 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Hartmann, R.: Adjoint consistency analysis of discontinuous Galerkin discretizations. SIAM J. Numer. Anal. 45(6), 2671–2696 (2007). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Hintermüller, M., Laurain, A.: Electrical impedance tomography: from topology to shape. Control Cybern. 37(4), 913–933 (2008)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Hintermüller, M., Laurain, A., Novotny, A.A.: Second-order topological expansion for electrical impedance tomography. Adv. Comput. Math. 36(2), 235–265 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Hiptmair, R., Paganini, A., Sargheini, S.: Comparison of approximate shape gradients. BIT 55(2), 459–485 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Holder, D.: Electrical Impedance Tomography: Methods, History and Applications. Series in Medical Physics and Biomedical Engineering. CRC Press, Boca Raton (2004)CrossRefGoogle Scholar
  41. 41.
    Jin, B., Maass, P.: An analysis of electrical impedance tomography with applications to Tikhonov regularization. ESAIM Control Optim Calc. Var. 18(4), 1027–1048 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Kikuchi, N., Chung, K., Torigaki, T., Taylor, J.: Adaptive finite element methods for shape optimization of linearly elastic structures. Comput. Method Appl. Mech. 57, 67–89 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Kim, K.Y.: A posteriori error analysis for locally conservative mixed methods. Math. Comput. 76(257), 43–66 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Kohn, R., Vogelius, M.: Relaxation of a variational method for impedance computed tomography. Commun. Pure Appl. Math. 40(6), 745–777 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Laurain, A., Sturm, K.: Distributed shape derivative via averaged adjoint method and applications. ESAIM Math. Models Numer. Anal. 50(4), 1241–1267 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Luce, R., Wohlmuth, B.I.: A local a posteriori error estimator based on equilibrated fluxes. SIAM J. Numer. Anal. 42(4), 1394–1414 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Morin, P., Nochetto, R., Pauletti, M., Verani, M.: Adaptive finite element method for shape optimization. ESAIM Control Optim Calc. Var. 18, 1122–1149 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Mozolevski, I., Prudhomme, S.: Goal-oriented error estimation based on equilibrated-flux reconstruction for finite element approximations of elliptic problems. Comput. Methods Appl. Mech. 288, 127–145 (2015)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Nicaise, S., Witowski, K., Wohlmuth, B.: An a posteriori error estimator for the lam equation based on equilibrated fluxes. IMA J. Numer. Anal. 28(2), 331–353 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36(1), 9–15 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Nochetto, R., Siebert, K., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: DeVore, R., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542. Springer, Berlin (2009)CrossRefGoogle Scholar
  52. 52.
    Oden, J., Prudhomme, S.: Goal-oriented error estimation and adaptivity for the finite element method. Comput. Math. Appl. 41(5–6), 735–756 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Paganini, A.: Approximate shape gradients for interface problems. In: New Trends in Shape Optimization, Int. Ser. Numer. Math., vol. 166. Birkhäuser/Springer, Cham, pp. 217–227 (2015)Google Scholar
  54. 54.
    Pantz, O.: Sensibilité de l’équation de la chaleur aux sauts de conductivité. C. R. Acad. Sci. I-Math. 341, 333–337 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Schleupen, A., Maute, K., Ramm, E.: Adaptive FE-procedures in shape optimization. Struct. Multidiscip. Optim. 19, 282–302 (2000)CrossRefGoogle Scholar
  56. 56.
    Schulz, V.H., Siebenborn, M., Welker, K.: Efficient PDE constrained shape optimization based on Steklov-Poincaré-type metrics. SIAM J. Optim. 26(4), 2800–2819 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Shahbazi, K.: An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205(2), 401–407 (2005)CrossRefzbMATHGoogle Scholar
  58. 58.
    Siebenborn, M., Welker, K.: Computational aspects of multigrid methods for optimization in shape spaces. arXiv:1611.05272 (2016)
  59. 59.
    Sokołowski, J., Zolésio, J.P.: Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer, Heidelberg (1992)CrossRefzbMATHGoogle Scholar
  60. 60.
    Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford (2013)CrossRefzbMATHGoogle Scholar
  61. 61.
    Vohralík, M.: Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients. J. Sci. Comput. 46, 1–40 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.CMAP, Inria, Ecole polytechnique, CNRSUniversité Paris-SaclayPalaiseauFrance
  2. 2.DRIInstitut Polytechnique des Sciences AvancéesIvry-sur-SeineFrance
  3. 3.Laboratori de Càlcul Numèric, E.T.S. de Ingenieros de CaminosUniversitat Politècnica de Catalunya – BarcelonaTechBarcelonaSpain

Personalised recommendations